infraspatialOT: spatial relationships in road infrastructure

Ina Heise, André Borrmann

Technical University Munich

TUM School of Engineering and Design

Chair of Computational Modeling and Simulation

Bochum, 14.06.2024

Motivation

Digital twin as a tool for supporting the

maintenance and repair by providing a

comprehensive, reliable information base for

decision support

Key requirements

for a digital twin of an entire road infrastructure system

Road infrastructure consisting

of various interacting

subsystems

Key requirements

for a digital twin of an entire road infrastructure system

Scalability:

- in Bavaria: >27 800 structures and > 40 000 km of roads
- Automated evaluation of relationships between
 different subsystems

Example use case

Systems currently in use

Using graph-based representations of the legacy data

Qualitative relation to an object

right above

Quantitative relation to a reference system:

Ina Heise (TUM) | infraspatialOT: Spatial relations in road infrastructure | LDAC2024 – Bochum

Qualitative relation to an object

Quantitative in relation to a reference system:

Qualitative relation to an object

Quantitative in relation to a reference system:

Ina Heise (TUM) | infraspatialOT: Spatial relations in road infrastructure | LDAC2024 – Bochum

Quantitative in relation to a reference system:

Development of an ontology

Localisation in longitudinal direction:

Development of an ontology

Derivation of spatial relationships between road infrastructure elements

Localisation in longitudinal direction

Positioning in transverse direction

Formalization as ontology

Case study: Infrastructure data from Bavaria (Germany)

- Resulting from ASB (Standard for all German infrastructure data), all infrastructure data contain a reference to a defined network
- Implementation of network reference varies between the different data structures used
- Two considered systems:
 - SIB-Bauwerke for structure management
 - BAYSIS for road management

Conclusion

- description of spatial relationships between road
 infrastructure elements
- using a reference system consisting of linear reference elements
- Enabling derivation of use case-specific relations between infrastructure elements

Limitations and future work

- Consistency between legacy data and graph-based representation
- Derivation of relationships between road infrastructure elements and reference elements
 - from geometry information
 - from further data structures of other legacy data sets
- Extension of the approach to higher levels of detail

RoadInfrastructureElements

Acknowledgement

We thank the Bavarian State Ministry for Housing, Construction, and Transport for funding this research in the frame of the research project "Digital Twin for Operating Road Infrastructure".

