

Standard-oriented ontology export of domain catalogues from data dictionaries

Sebastian Schilling Christian Clemen Faculty of Spatial Information, HTW Dresden

10.06.2024

Introduction

GIS

(Geographic Information System)

BIM

(Building Information Modeling)

no common standards

Benefits of using Data Dictionaries in the Semantic Web

- **Semantic Web**: Schema (T-Box) and data (A-Box) can be stored in the same structure (graph) and system (file/database/service)
- A semantic **dictionary** (T-graph) shall be used by many different systems, the same semantics can be used to query different data
- Many dictionaries (T-graphs) need a common meta-concept (M-graph)
- T-graph, M-graph, A-Box are using the **same structure** and systems

The Idea Behind

Can Semantic Web technologies help to compare and link data dictionaries from different domains?

Related Work - Existing Ontology Export Approaches

Paper	Export Level	Source	Method	Exported Concepts
Oraskari, 2021	OWL	bSDD	OpenAPI	IFC property sets + properties
Zhang et. al, 2014	OWL	bSDD	unknown	concepts
Pauwels et. al, 2016	OWL	bSDD	unknown	unknown
Wagner & Rüppel, 2019	no export	bSDD	reference property with bSDD GUID	nothing
buildingSMART, 2022	RDF	bSDD	OpenAPI	classes + properties

Differences in our approach:

- we use our own open-source backend as a source
- we organise our ontology strictly according to ISO 12006-3
- all concepts can be exported from the data dictionary
- we use existing ontologies for the export of meta information

datacat - Open Source Property Server

The backend implements the ISO 12006-3:2016 standard

datacat - Open Source Property Server

Source: Managing and publishing standardized data catalogues to support BIM processes, Clemen et al., 2021

HTWD 10.06.2024 Schilling, Clemen: Standard-oriented ontology export of domain catalogues from data dictionaries

implementation of metamodel from ISO 12006-3:2016

rdf:type

HTWD 10.06.2024 Schilling, Clemen: Standard-oriented ontology export of domain catalogues from data dictionaries

···· represents concept in ontology

concepts that describe a domain as instances of meta concepts

rdf:type

based on "Building product catalogues on the semantic web", Beetz & de Vries, 2009

concepts with meta concept structure represented as ontology

> based on "Building product catalogues on the semantic web", Beetz & de Vries, 2009

HTW_D 10.06.2024 Schilling, Clemen: Standard-oriented ontology export of domain catalogues from data dictionaries

Ontology Export Processing Sequence

Standard-based Metadata Properties

• Dublin Core

• RDF Schema

Metadata from datacat	Used ontology property		
name	rdfs:label		
creator	dcterms:creator		
created	dcterms:created		
modified	dcterms:modified		
description	dcterms:description		
id	dcterms:identifier		
ISO 12006-3 concept type	dcterms:type		
Prefixes : rdfs: <u>http://www.w3.org/2000/01/rdf-schema\#</u> dcterms: <u>http://purl.org/dc/terms/</u>			

Restrictions made by Class Axioms

```
:Facilities rdf:type owl:Class ;
```

```
dcterms:type "xtdBag" ;
```

```
rdfs:label "Facilities"@en;
```

```
rdfs:subClassOf [
```

```
rdf:type owl:Restriction ;
```

```
owl:onProperty :collects ;
```

```
owl:allValuesFrom owl:unionOf (:Lighting :Pole :Sign)
```

Metamodel ISO 12006-3 for Comparison

:Facilities rdf:type owl:Class ;

dcterms:type "xtdBag" ;

rdfs:label "Facilities"@en;

```
rdfs:subClassOf [
```

].

```
rdf:type owl:Restriction ;
```

```
owl:onProperty :collects ;
```

```
owl:allValuesFrom owl:unionOf (:Lighting :Pole :Sign)
```

Update datacat to the new version of ISO 12006-3:2022

- two major changes have a significant impact
 - grouping of concepts (now only for Subjects and Properties)
 - relationships between concepts (simplified relationships)
- many smaller changes that do not have a major impact

Outlook - Layer Structure with old ISO 12006-3

based on "Building product catalogues on the semantic web", Beetz & de Vries, 2009

Outlook - Layer Structure with new ISO 12006-3

based on "Building product catalogues on the semantic web", Beetz & de Vries, 2009

Results

- property server **exports single concepts / entire data dictionaries** as ontology
- exported ontologies are classified and standardised with metamodel from ISO 12006-3
- different domain ontologies are **comparable due to equal metamodel**
- the research provides a technical and methodological basis for a shared and cross-domain use of data dictionaries in BIM and GIS

Limitations

- old ISO 12006-3 standard is used for ontology export
- **not all concepts** for ontology export could be used from **standardised vocabularies**
- concepts for units and values in datacat need to be standardised for efficient usage and export
 - e.g. Ontology of Units of Measure (OM) should be used
- GIS data dictionaries are missing in property servers until now (research objective)

References

- J. Oraskari, Live web ontology for buildingsmart data dictionary, 2021. URL: <u>https://www.researchgate.net/publication/355425683_Live_Web_Ontology_for_buildingSMART_Data_Dictionary#fullTextFileContent</u>.
- C. Zhang, J. Beetz, B. de Vries, An ontological approach for semantic validation of ifc models, in: Proceedings of the 21st International Workshop on Intelligent Computing in Engineering, Cardiff, United Kingdom, Curran Associates, Inc., Red Hook, 2014, pp. 1–8. URL: <u>https://www.researchgate.net/publication/266326240_An_Ontological_Approach_for_Semantic_Validation_of_IFC_Models</u>.
- P. Pauwels, T. Krijnen, J. Beetz, Making sense of building data and building product data, 2016. URL: <u>http://babelnet.org/lux/files/4.%20pauwels%20et%20al.%20-</u> <u>%20making%20sense%20of%20building%20data%20and%20building%20product%20data.pdf</u>.
- A.Wagner, U. Rüppel, Bpo: The building product ontology for assembled products, in: Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019, Lisbon, Portugal, 2019, pp. 106–119. URL: <u>http://tubiblio.ulb.tu-darmstadt.de/115951/</u>.
- buildingSMART, Rdf, 2022. URL: <u>https://github.com/buildingSMART/bSDD/blob/master/Documentation/RDF.md</u>.

Hochschule für Technik und Wirtschaft Dresden University of Applied Sciences

Thank you for your attention!

Contact:

sebastian.schilling@htw-dresden.de christian.clemen@htw-dresden.de

Acknowledgements:

This work is co-funded by the European Union and the Free State of Saxony as part of the ESF Plus programme (Funding Number: 100670485)

This project is co-financed from tax revenues on the basis of the budget adopted by the Saxon State Parliament.