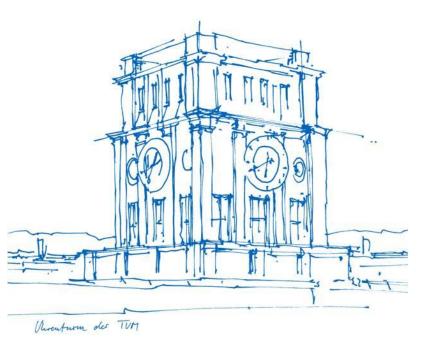


Advanced Process Representation for Semi-Automated Linking between


Construction Schedules and IFC Files

Jonas Schlenger, André Borrmann

Chair of Computational Modeling and Simulation

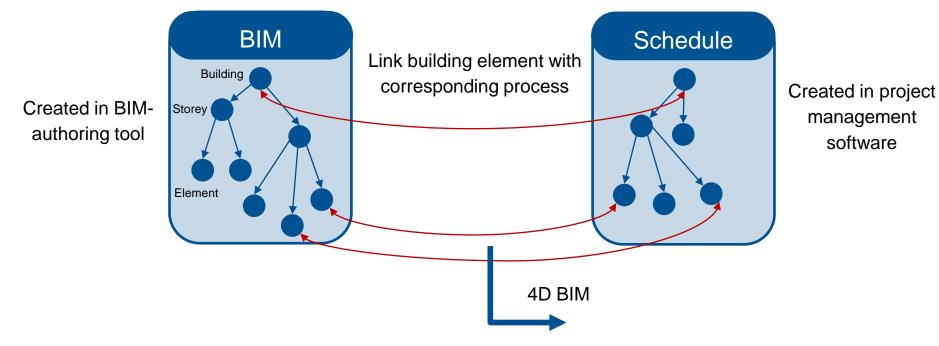
Technical University of Munich

Bochum, 13th of June 2024

Problem Statement and Goal

Schedule exchange:

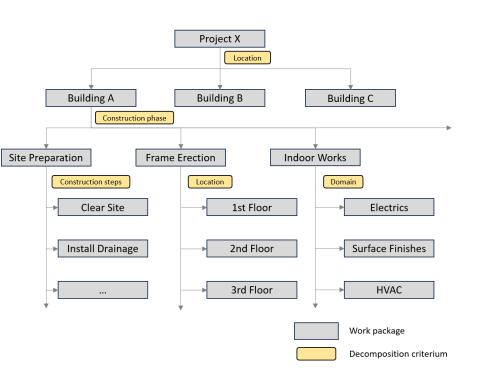
- XML and spreadsheet-based
- Difficulties in interpretation arise from:
 - Project management software
 - Language
 - Project-specific abbreviations
 - Scheduling methodology
- \rightarrow Loss of information


Goal:

- Automated interpretation of schedules
- Understand process dependencies

Task Name	v	Parent	Ŧ	Is Leaf Task	-	Location ID	Ŧ	Location X
Kellarin sähköhyllyt		808339	87	FALSCH		35605	46	B - 01 - kerro
Lämpörungot ja patterit + käyttövesiputket		808339	87	WAHR		35605	33	B - OK - Kerros K
Lämpörungot ja patterit + käyttövesiputket		808339	89	FALSCH		35605	46	B - 01 - kerros 1
Asuntojen kaapelointi		808339	87	WAHR		35605	33	B - OK - Kerros K
Asuntojen kaapelointi		808339	88	FALSCH		35605	47	B - 02 - kerros 2
Lämpörungot ja patterit + käyttövesiputket		808339	89	FALSCH		35605	47	B - 02 - kerros 2
Asuntojen kaapelointi		808339	88	FALSCH		35605	48	B - 03 - kerros 3
Ääniloukkumuotit		808339	93	FALSCH		35605	46	B - 01 - kerros 1
Ääniloukkumuotit		808339	93	FALSCH		35605	47	B - 02 - kerros 2
Lämpörungot ja patterit + käyttövesiputket		808339	89	FALSCH		35605	48	B - 03 - kerros 3
IV-hajotukset		808339	87	WAHR		35605	33	B - OK - Kerros K
IV-hajotukset		808339	99	FALSCH		35605	46	B - 01 - kerros 1
Rappaus / Talo A>POHJOINEN		818416	13	FALSCH		41328	58	B Talo B
Asuntojen kaapelointi		808339	88	FALSCH		35605	49	B - 04 - kerros 4
Lämpörungot ja patterit + käyttövesiputket		808339	89	FALSCH		35605	49	B - 04 - kerros 4
IV-hajotukset		808339	99	FALSCH		35605	47	B - 02 - kerros 2
Asuntojen kaapelointi		808339	88	FALSCH		35605	50	B - 05 - kerros 5
Lämpörungot ja patterit + käyttövesiputket		808339	89	FALSCH		35605	50	B - 05 - kerros 5
IV-hajotukset		808339	99	FALSCH		35605	48	B - 03 - kerros 3

Linking IFC and Schedule



Work Breakdown Structures

- Systematical breakdown of construction
 project into manageable parts
- Level of detail can be selected for every work package individually
- Dependent on organizational structure of the project and its individual partners

Decomposition criteria are essential to interpret the meaning of individual work packages

Process Decomposition Criteria

- Analysis of schedules of 8 past and ongoing real-world construction projects
- Manual identification of the used process decomposition criteria
- Additional guidance through constructionrelated classification systems (OmniClass, UniClass, etc.)
- \rightarrow 9 categories of decomposition criteria

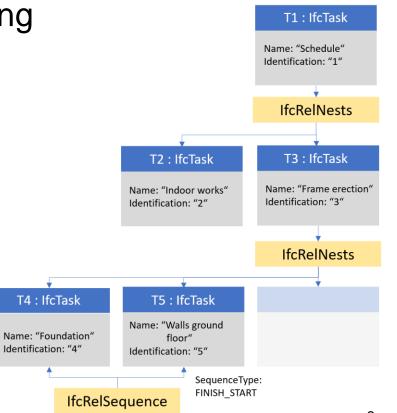
Criterion	Examples	Percentage used
Phase	earth works, frame errection	1.00
Production method	precast, cast-in-place	0.13
Construction step	place formwork, pour concrete	1.00
Location	building, storey, room	1.00
Element	wall, column, slab	0.75
Discipline / domain	plumber, electrician, painter	0.88
Equipment	crane, excavator, concrete mixer	0.25
Material	wood, tiles, concrete, steel	0.25
Property	diameter, width, height, load-bearing	0.38

Data Schemata for Process Modeling

Main Requirements:

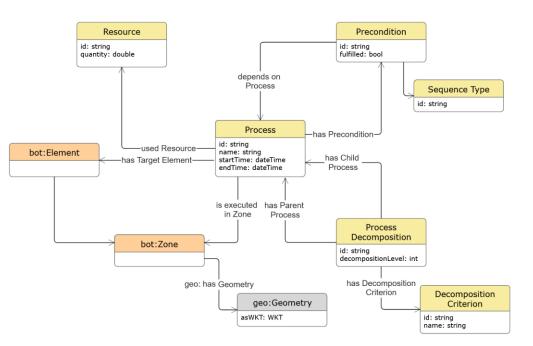
- Decomposition criteria
- Process dependencies

Existing Schemata:


- IFC / ifcOWL
 IoC
- DiCon

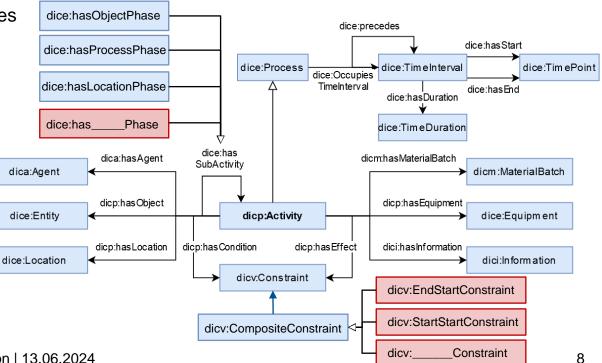
СТО

Limitations:


- Only some of them cover process dependencies (start-start, end-start, etc.)
- Most of them cover only a generic process decomposition (e.g. IfcRelNests)
- J. Schlenger | Advanced Process Representation | 13.06.2024

Construction Schedule Ontology (CSO)

- Process as central class
- **Decomposition criterion** (+ 9 individuals)
- Process preconditions with sequence types (start-start, start-end, end-start, end-end)
- **Resources:** worker, equipment, formwork, materials, etc.
- Reuse of **BOT** for building-related aspects
- **GeoSPARQL** used for representation of geometry (optional usage)


Integration into Existing Ontologies

Integration with the following ontologies can be achieved with little effort:

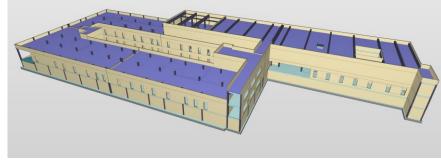
- DiCon
- CTO
- IOC
- ifcOWL

Changes required for DiCon:

- Add 6 sub-properties for dice:hasSubActivity
- 4 subclasses of dicv:CompositeConstraint for process sequences
- J. Schlenger | Advanced Process Representation | 13.06.2024

Case Study – Linking IFC and Schedule

Spanish construction project of a hospital building

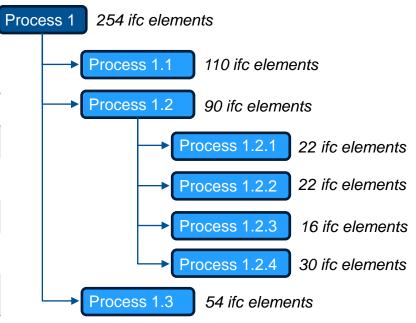

Available planning information:

- IFC file
- Schedule as Excel export (Primavera)
- Manually added decomposition criteria

Graph setup:

- IFCtoLBD Converter
- xBIM for extraction of further IFC information
- Newly implemented schedule converter

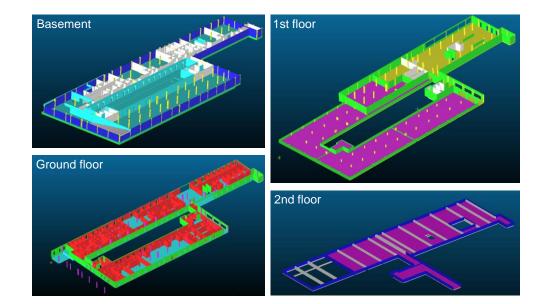
ID	Name	Parent	Start	End	Preconditions	inBIM	Criterium
999	Building 12A	0	03.03.2023	01.07.2024		true	Phase
1000		999	03.03.2023	10.04.2024		true	Phase
1001	Preparation works	1000	03.03.2023	04.10.2023		false	
1002	Foundation and structure	1000	19.03.2023	13.12.2023	1001	true	Phase
1003	Foundation and structural walls	1002	19.03.2023	08.09.2023		true	ConstructionStep
1005	Shallow foundation	1003	19.03.2023	09.08.2023		true	ConstructionStep
1006	Lump sum to justify calculation and execution of canopy foundations for all buildings	1005	19.03.2023	23.07.2023		false	
1007	Shallow foundation for building 12A	1005	23.07.2023	09.08.2023	1006	true	
1009	Retaining walls	1003	30.07.2023	08.09.2023	1005	true	Element
1010	Continuous footing and (wall) struts HA-25/B/20/IIa building 12A	1009	30.07.2023	16.08.2023		true	
1012	Concrete wall e/40cm Level 0_0.00 building 12A	1009	17.08.2023	28.08.2023	1010	true	
1014	Concrete and structural beams	1002	10.08.2023	13.12.2023	1003	true	Material
1015	Concrete structure	1014	10.08.2023	13.12.2023		true	Element
1017	Columns	1015	10.08.2023	13.12.2023		true	Location
1018	Execution of pillars building 12A Level 0_0.00	1017	10.08.2023	01.09.2023		true	
1020	Execution of pillars building 12A Level 1_4.12	1017	20.09.2023	10.10.2023	1025	true	
1022	Execution of pillars building 12A Level 2_8.12	1017	31.10.2023	21.11.2023	1027	true	
1024	Slabs and stairs	1015	04.09.2023	07.12.2023		true	Location
1025	Solid slabs including staircase building 12A Level 0_0.00	1024	04.09.2023	19.09.2023	1018,1032	true	
1027	Solid slabs including staircase building 12A Level 1_4.12	1024	11.10.2023	30.10.2023	1020,1034	true	
1029	Solid slabs including staircase building 12A Level 2_8.12	1024	02.11.2023	21.11.2023	1022,1036	true	
1031	Walls and screens	1015	10.08.2023	30.11.2023		true	Location
1032	Walls and screens HA-25/B/20/I e/40cm building 12A Level 0_0.00	1031	10.08.2023	01.09.2023		true	
1034	Walls and screens HA-25/B/20/I e/40cm building 12A Level 1_4.12	1031	20.09.2023	10.10.2023	1025	true	
				08.11.2023	1027	true	
				13.11.2023	1015	true	Element
				12 11 2022		true	



Case Study – Filtering Criteria

- Traversal of process hierarchy
- Application of filtering operations
 dependent on the process decomposition
 criterion

Criterion	Filtering
Element	beo:BuildingElement subclasses
Location	bot:Building, bot:Storey, bot:Space, bot:Zone
Phase / Construction Step / Method	No immediate filtering
Property	Values of datatype properties of beo:BuildingElement nodes
Equipment / Discipline / Material	Type of resource assigned to process

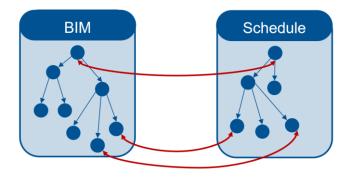


Case Study - Results

- Filtering operations applied to all processes
- Building elements linked with processes
- Elements colored according to their corresponding process for visualization purpose

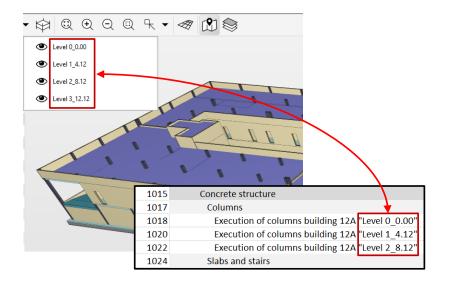
Challenge:

 Load-bearing and non-load-bearing walls only distinguishable by their material



Conclusion

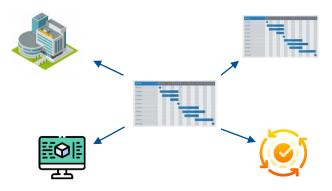
- Identification of process decomposition criteria
- Well-defined **representation of processes** and their dependencies
- Semi-automated linking of schedule and IFC elements


Criterion	Examples	Percentage used
Phase	earth works, frame errection	1.00
Production method	precast, cast-in-place	0.13
Construction step	place formwork, pour concrete	1.00
Location	building, storey, room	1.00
Element	wall, column, slab	0.75
Discipline / domain	plumber, electrician, painter	0.88
Equipment	crane, excavator, concrete mixer	0.25
Material	wood, tiles, concrete, steel	0.25
Property	diameter, width, height, load-bearing	0.38

Limitations

- Similar naming used in the schedule and IFC file
- Use of project-specific abbreviations
- Mismatch between granularity of the schedule and IFC file (automated splitting of lfcBuildingElements not covered)
- Manual effort to assign decomposition criteria

Future Work - Other Applications


Future Work:

- Natural Language Processing
- Integrate CSO into an existing ontology
- Investigate on subclasses for decomposition criteria

Other Applications:

Automated schedule interpretation

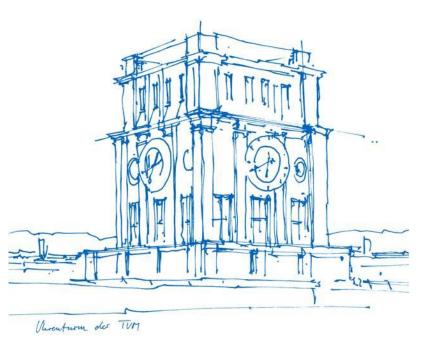
- Integration into simulation systems
- Coordination between contractor and subcontractor
- Schedule consistency checks

References

- [1] buildingSMART International, IFC Schema Specifications, 2021. URL: https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/.
- Y. Zheng, S. Törmä, O. Seppänen, A shared ontology suite for digital construction workflow, Automation in Construction 132 (2021) 103930. doi:10.1016/j.autcon.2021.10393
- [3] L. Kirner, J. Oraskari, P. R. Wildemann, Internet of Construction Process Ontology (ioc), 2023. URL:https://ip.pages.rwth-aachen.de/ioc/core/#status
- [4] M. Bonduel, CTO: Construction Tasks Ontology, 2020. URL: https://mathib.github.io/cto-ontology/
- [5] A. Cerezo-Narváez, A. Pastor-Fernández, M. Otero-Mateo, P. Ballesteros-Pérez, Integration of cost and work breakdown structures in the management of construction projects, Applied Sciences (Switzerland) 10 (2020). doi:10.3390/app10041386.
- [6] Y. Jung, S. Woo, Flexible Work Breakdown Structure for Integrated Cost and Schedule Control, Journal of Construction Engineering and Management 130 (2004) 616-625. doi:10.1061/(asce)0733-9364(2004)130:5(616).
- [7] J. Beetz, J. V. Leeuwen, B. D. Vries, IfcOWL: A case of transforming EXPRESS schemas into ontologies, Artificial Intelligence for Engineering Design, Analysis and Manufacturing 23 (2009) 89–101. doi:10.1017/S0890060409000122
- [8] M. H. Rasmussen, M. Lefrançois, G. F. Schneider, P. Pauwels, BOT: The building topology ontology of the W3C linked building data group, Semantic Web 12 (2020) 143–161. doi:10.3233/SW-20038
- [9] M. Bonduel, J. Oraskari, P. Pauwels, M. Vergauwen, R. Klein, The IFC to linked building data converter Current status, in: 6th Linked Data in Architecture and Construction Workshop, volume 2159, 2018, pp. 34–43.
- [10] J. Schlenger, T. Yeung, S. Vilgertshofer, J. Martinez, R. Sacks, A. Borrmann, A Comprehensive Data Schema for Digital Twin Construction, in: 29th International Workshop on Intelligent Computing in Engineering, 2022, pp. 34–44.
- [11] P. Pauwels, Building Element Ontology, 2018. URL: https://pi.pauwel.be/voc/buildingelement/
- [12] J. Tulke, Kollaborative Terminplanung auf Basis von Bauwerksinformationsmodellen, Informatik in Architektur und Bauwesen 4 (2010). URL: https://d-nb.info/1116284456/34.
- J. Schlenger | Advanced Process Representation | 13.06.2024

We thankfully acknowledge the financial support of the EU H2020 project BIM2TWIN and the Innovations Management Bau GMBH!

Advanced Process Representation for Semi-Automated Linking between


Construction Schedules and IFC Files

Jonas Schlenger, André Borrmann

Chair of Computational Modeling and Simulation

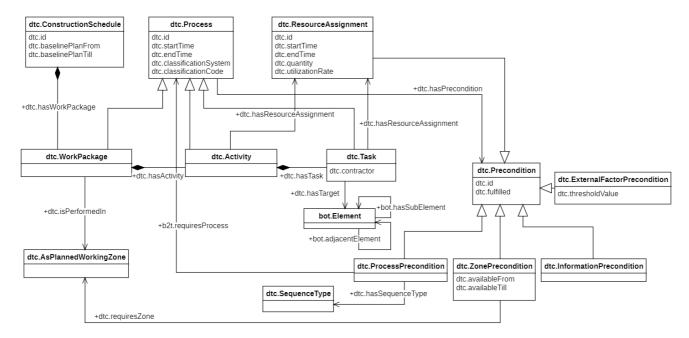
Technical University of Munich

Bochum, 13th of June 2024

Classification Systems in Construction

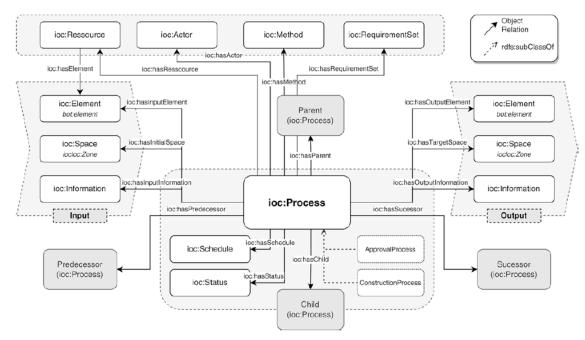
Many national and international classification systems:

- MasterFormat
- Uniformat
- Omniclass
- CoClass
- ISO 12006-2
- ISO 81346-12


Helpful in defining decomposition criteria

ISO 12006-2	ISO 81346-12	OmniClass	CoClass	CCS	UniClass
Information		Information		Documents	Forms
Products	Components	Products Materials	Components	Components	Products
Agents		Disciplines Roles		Documents	Agents
Aids		Tools		Equipment	Tools
Alus		TOOIS		Equipment	Equipment
Management		Services		Documents	Project Managemen
Processes		Phases		Documents	Phases
Complexes			Complexes		Complexes
		By Functions	Entities	Entities	Entities
Entities		By Forms			Activities
Duille Caraca	C	By Functions	C	Built Spaces	Spaces
Built Spaces	Spaces	By Forms	Spaces	User Spaces	Locations
F 1	By Function		By Functions	By Functions	Functions
Elements	By Technics	Elements	By Technics	By Technics	Systems
Work Results		Work Results	Production		•
Properties		Properties	Properties Landscape	Classes	Properties CAD

Data Schemata for Process Modeling


Digital Twin Construction Ontology (DTC):

Data Schemata for Process Modeling

Internet of Construction Ontology (IOC):

