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1. Extended Abstract

Heating, ventilation and air conditioning systems, e.g. air handling units (AHUs), play a key role
in modern building energy systems (BES) as they account for a high share of the energy usage, e.g.
30 % within the U.S. commercial building sector [1]. Unfortunately, many faults occur during the
operation of AHUs leading to higher energy usage and the need of expert personnel monitoring the
according plants. The latter is a time-consuming task and nowadays assisted by fault detection and
diagnosis (FDD) systems. A study by Kramer et al. shows median savings of 6 % building energy usage
in using FDD systems in the first year after installation of the FDD system [2]. Fault reports usually
do not follow a standardized format, there are no consistent naming conventions, and FDD reports
can often only be interpreted by FDD developers [3]. This can lead to high maintenance costs because
maintenance personnel needs time to get familiar with the building, its energy system, the data point
naming conventions and fault report conventions. To reduce the time maintenance personnel needs
to understand fault reports and locate possible faults, this work presents a rule-based approach on
semantic knowledge in AHUs to detect and locate faults within them.

For this approach, a graph-based ontology for FDD in AHUs is developed. The main characteristics of
the proposed FDD ontology are (1) the connection of AHU components, e.g. sensors and actuators, and
their possible faults, (2) the faults are characterized by their fault type, e.g. condition-based, behavior-
based, or outcome-based, (3) a class for FDD rules that need to be evaluated in the FDD process is
created while semantic web rule language (SWRL) rules connect these FDD rules with components of
AHUs, and (4) sensors and their faults are connected to a AHU section class allowing faster fault and
sensor location.

The developed FDD ontology describes which faults can occur in components, e.g. temperature
sensors or valves, modelled with the BrickSchema ontology (Brick) [4]. This fault mapping as well as
the fault types are derived from prior work from Chen et al. [3]. As mentioned, possible fault types
are condition-based, behavior-based, and outcome-based. Condition-based faults represent "improper
or undesired physical condition in a system or piece of equipment" [3], e.g. a frozen sensor or a stuck
valve. Behavior-based faults represent "improper or undesired behavior during the operation of a
system or piece of equipment" [3], e.g. a too high or too low supply air temperature. Outcome-based
faults represent states "in which a quantifiable outcome or performance metric for a system or piece of
equipment deviates from a correct or reference outcome, termed the expected outcome", e.g. too high
heating demand.

Figure 1 shows examplary data of a supply air temperature sensor in the supply air section and
its possible faults which is monitored by rule 1 of the Air Handling Unit Performance Assessment
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Figure 1: Example data of the proposed FDD ontology with a temperature sensor modelled in Brick. It is
connected to its possible faults, rule 1 of the APAR monitoring the sensor data, all modelled with the proposed
FDD ontology, and the time series reference modelled in Brick.

Rule 1:
FDD : h a s S e c t i o n ( ? c , FDD : M i x e d A i r S e c t i o n ) ∧
b r i c k : Mixed_Ai r_Tempera ture_Sensor ( ? c ) ∧
b r i c k : S u p p l y _ A i r _ T e m p e r a t u r e _ S e n s o r ( ? d ) ∧
FDD : h a s S e c t i o n ( ? d , FDD : S u p p l y A i r S e c t i o n )
⇒ FDD : usesComponent (FDD : r u l e 1 , ? d ) ∧ FDD : usesComponent (FDD : r u l e 1 , ? c )

Figure 2: SWRL representation of the APAR rule 1 according to [5].

Rules (APAR) by Schein et al. [5]. Rule 1 verifies whether the supply air temperature 𝑇𝑠𝑎 is lower than
the mixed air temperature 𝑇𝑚𝑎 plus the temperature change over the supply air fan ∆𝑇𝑠𝑓 minus a plant
specific factor 𝜖. It is expressed in equation 1 as

𝑇𝑠𝑎 < 𝑇𝑚𝑎 +∆𝑇𝑠𝑓 − 𝜖 (1)

The examplary SWRL rule for rule 1 is depicted in figure 2.
For the assessment of rule 1, temperature data for a mixed air temperature sensor mod-

elled as brick:Mixed_Air_Temperature_Sensor and a supply air temperature sensor modelled as
brick:Supply_Air_Temperature_Sensor need to be queried. If these components are present in the
knowledge graph, a relationship between rule 1 and the sensors is added to the knowledge graph. The
temperature change over the fan ∆𝑇𝑠𝑓 and the plant-specific parameter 𝜖 are parameters of the Python
code.

During the development of the proposed FDD ontology, a similar, independently developed, approach
was published by Hwang et al. [6]. While Hwang et al. follow the same approach in modelling faults to
certain brick components, they do not use standardized naming conventions or fault types and do not
model AHU sections to locate the fault. Furthermore, faults like malfunctioning, stuck, leakage, fouling,
and block are modelled for components like valves, coils, pumps, dampers and fans in [6], yet,common
sensor faults are not modelled. The proposed FDD ontology in this paper combines the idea of formal
fault mapping of common sensor faults following structured naming conventions assisting maintenance
personnel to locate faults easier.

The information about the actual plants, their configuration, sensors, actuators, and controls are



stored in a knowledge graph in a graph database. The FDD program is written in Python language
running in a loop. During each run, it loops through all FDD rules and verifies whether all components
needed to evaluate a rule are present in the knowledge graph. If a component needed for a certain
rule is missing the evaluation for that rule is skipped. At the current stage of implementation, the
implemented rules are based on the APAR. In the evaluation process of a rule, the FDD program
follows the brick:hasTimeseriesReference property for every component towards the URI where the time
series data is stored, fetches and evaluates it. In that process, the FDD program verifies whether the
rule’s statement is valid and if the fetched time series data shows any anomalies in accordance to the
components’ possible faults, e.g. whether the time series data for a sensor is frozen.

In this work, data from a real AHU is sent to a cloud platform developed in previous work every
second via the message queuing telemetry transport (MQTT) protocol [7]. To validate the framework,
we manipulated the real time series data of the AHU and the FDD program checks the data every
30 minutes. Depending on whether a fault is present or not, fault messages are gathered in a list and
sorted according to their incidence. The incidence is calculated with the cumulative sum control chart
(CUSUM) in order to allow a certain prioritization for maintenance personnel. The fault messages
include the fault name that is composed by the section of the equipment type, in this case AHU, the
AHUSection, the component type and the fault nature, e.g. frozen, all according to Chen et al. [3]. All
this information is retrieved through queries to the graph database. The notation allows maintenance
personnel to locate the faults fast.

The developed approach is validated using historic data of a real AHU on our premises. We injected
faults into the historic data, e.g. drift, stuck, bias, fouling, abnormal, and frozen.

Before injecting the faults, we carried out a baseline experiment in which pre-existing faults in
the time series data of the AHU were identified. These faults were excluded from the analysis in the
subsequent tests where faults have been injected. The isolation of the injected faults allowed a more
in-depth analysis of the fault detection rate without interference of pre-existing faults. Furthermore,
the manipulation of the time series data allowed verifying the FDD algorithm for all implemented
faults in different configurations and combinations for the same time period, thus providing better fault
isolation results. The injected faults are pre-defined based on fault-specific characteristics, e.g. a frozen
sensor is mimicked by repeating the last value at a certain point in time in the time series data untill
the end of the analyzed time period. A frozen sensor itself is identified as such if the time series data
are constant for more than 80 % of a certain time period, e.g. 30 minutes. Different combinations of
faulty data were injected and analyzed, subsequently, the faults were isolated and the fault report, as
shown in table 1, is created or supplemented. The found isolated faults are compared to the injected
faults and 2x2 confusion matrix are used to determine the quality of the FDD algorithm.

Table 1
Examplary fault report
(BB = behavior-based, CB = condition-based)

N time sensor fault type section cusum faulty values
1 13:00 Sensor1 Abnormal BB SupplyAirSection 0.7 ’value’: 18.4, ’setpoint’: 21
2 13:00 Sensor2 Drift CB CondenserSection 0.7 ’value’: 10.4, ’setpoint’: 13
1 13:30 Sensor1 Abnormal BB SupplyAirSection 1.4 ’value’: 18.5, ’setpoint’: 21
2 13:30 Sensor2 Drift CB CondenserSection 1.4 ’value’: 10.3, ’setpoint’: 15

The results indicate a high rate of fault detection, e.g. average accuracy of 99.3 %, precision of 97.85 %,
sensitivity of 95.6 %, and Matthews Correlation Coefficient of 98.4 %. Although the FDD algorithm
checks for self-injected faults, the FDD algorithm does not deliver perfect results. This is due to the
fact that some parameters, e.g. the 𝜖 of rule 1, are not chosen perfectly. Yet, the approach is considered
valid for FDD in the presented framework with self-injected faults as the majority of the injected faults
is found and the fault reports are created correctly to allow fast fault location assessment and fault
prioritization through the use of CUSUM.

In the future, it is planned to implement more complex faults, such as control faults. Further-
more, the semantic enriched plant configuration, fault types and fault locations shall be used to



discover fault-symptom relationships. Additionally, the implemented APAR rules in the FDD al-
gorithm are currently just looking for the exact implementation of component characteristics as
depicted in the original APAR rules. E.g. rule 1 is only checking for supply air temperature
sensors modelled as brick:Supply_Air_Temperature_Sensor and mixed air temperature sensors as
brick:Mixed_Air_Temperature_Sensor. This means that the knowledge graph needs to be modelled
exactly in the same way as the FDD rules are implemented. If modelled differently, the FDD algorithm
will skip certain rule validations. The approach of computational quantities and decision trees to
find component characteristics modelled differently, e.g. a supply air temperature sensor modelled as
brick:Air_Temperature_Sensor in the supply air modelled as fdd:SupplyAirSection, by Mavrokapnidis
et al. [8] can help to expand the use of the proposed framework.

Formalizing the relationship between components of AHUs and faults, fault types, and locations in
machine and human readable format bear huge advantages in FDD and resolving faults in AHUs by
assisting maintenance personnel with standardized semantic-enriched fault reports.

Yet, further investigation on the proposed approach is needed to quantify the benefits, e.g. mainte-
nance time and cost.
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