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Me and my work

Ø Co-editor of W3C/OGC standard Semantic Sensor Network Ontology 

https://www.w3.org/TR/vocab-ssn/

Ø Developed one of the first RDF/Semantic Stream Processing Frameworks, CQELS
(Continuous Query Evaluation over Linked Stream) → (Semantic) Stream Reasoning 

Ø Principle Investigator of  the DFG project, COSMO (Computing Foundations for Semantic 
Stream Processing) → Performance and Scalability

Ø Technical Coordinator of EU Horizon project, SMARTEDGE (Semantic Low-code Tools for 
Edge Intelligence) → Sensor fusion for Autonomous Vehicles, V2X and Robotics

Ø BIFOLD Junior Fellow and Project Lead of  the Berlin Institute for Foundations of Learning 
and Data (bifold.berlin) → Neural-Symbolic AI for Cooperative Perception in V2X

https://www.w3.org/TR/vocab-ssn/


Connect Sensors to Stream Graphs

Program Semantic-based Perception

Emerging Applications

Integrate Spatial Knowledge into Perception



Connect Sensors to the Graph of Things
(Semantic, Spatial and Temporal correlation)

Le-Phuoc D. et al. The Graph of Things: A step towards the Live Knowledge Graph of connected things. J. Web Semantics 2016
Le-Phuoc D. et al. Live linked open sensor database. iSemantics 2010

http://graphofthings.org/: >200K live stream sources, >200 billion RDF triples/ graph edges

http://graphofthings.org/


Synergies from Cognitive Neuroscience

Ø Endel Tulving. 1972. Episodic and semantic memory. In Organization of Memory, ed. E Tulving, 

W Donaldson, pp. 381–403. New York: Academic

vSemantic memory is organized knowledge a person possesses about words and other verbal symbols, their 

meanings and referents, about the relations among them, and about rules, formulas, and algorithms for the 

manipulation of these symbols, concepts and relations ⇨ Semantic Knowledge Graphs?

vEpisodic memory is associated with the events that take place in the life of an individual. It receives and store 

information about temporally dated episodes or events and temporal spatial relations among these events⇨

Event/Stream/(Spatial-)Temporal Graphs?

Ø Many studies of Cognitive Neuroscience shown interdependence in terms of encoding and retrieval ⇨

Composability + Reasoning?



Stream graphs Computation graphs ⇨ Semantic Stream Reasoning Programmes

Ego-vehicle View

Symbolic Stream data fused symbolic node

Semantic Memory and Episodic Memory as Semantic Streams

ITS View

Episodic Memory

hosted in computation node

Semantic Memory

Object Detection/Segmentation, Tracking, Optical Flow, 
Simultaneous localization and mapping (SLAM), etc

Ventral Stream→What

Dorsal Stream→Where



Semantic  graphsStream graphs Computation graphs

Ego-vehicle View

Symbolic Stream data semantic type (isA)fused to symbolic node

Traffic Sign

Automobile

Pedestrian

TruckSedan Bus

hosted in computation node

Vehicle

Bicycle

Tracking Object

Semantic Streams: Computation model of Semantic Memory and Episodic Memory

Le-Phuoc, D., Hauswirth, M. (2022). Semantic Stream Processing and Reasoning.
In: Zomaya, A., Taheri, J., Sakr, S. (eds) Encyclopedia of Big Data Technologies.

ITS View

Semantic MemoryEpisodic Memory

Semantic-driven Human cognition

Manipulate Semantic Symbols
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Open and Enterprise 
Knowledge Base

Unified Data Integration Bus with Semantic Streams in RDF Graphs

Bröring A…Le-Phuoc D. et al. Enabling IoT Ecosystems through Platform Interoperability. IEEE Softw. 34(1), 2017
Le-Phuoc D. et al. Rapid prototyping of semantic mash-ups through semantic web pipes, WWW 2009

https://dblp.org/db/journals/software/software34.html


Stream of Sensory Observations as Stream Graphs
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Semantic Streams ⇨ Semantic-driven Declarative Programming



Unified Framework Using Processing Stream Graphs as Middleware
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Performance 
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Anh L.T, .. Le-Phuoc D...et al. Towards Building Live Open Scientific Knowledge Graphs. WWW Companion 2022.
Nguyen M. D, .. Le-Phuoc D..Towards autonomous semantic stream fusion for distributed video streams. DEBS 2021.
Le-Phuoc D.. et al. A middleware framework for scalable management of linked streams. J. Web Semantics, Nov, 2012 



CQELS execution Framework:
Autonomous RDF/Graph Stream Processing Kernel

Four key improvements:
Ø Native storage structure for 

stream graphs
Ø Operator-aware indexing scheme
Ø Adaptive optimization
Ø Incremental Evaluation

100-1000 time faster 
than Relational or RDF 
engines

CQELS Kernel

Manh N.D,.. Le-Phuoc D.. Autonomous RDF Stream Processing for IoT Edge Devices. JIST 2019
Le-Phuoc D.. et al. Operator-aware Approach for Boosting Performance in Processing RDF streams. J. Web Semantics 2017
Le-Phuoc D. et al. A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data. ISWC  2011



Scaling Up: Scalable and Elastic Data Processing Framework
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Coordinate pipelines of continuous tasks

Parallelize I/O access

Coordination service CQELS Kernel

Le-Phuoc D.. et al. Elastic and scalable processing of linked stream data in the cloud. ISWC  2013



Scaling Out: Spatial, Temporal and Semantic-based Partitioning

RDF 
Parser Triple Analyzer
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Recognition Rules
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Text 
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Entity 
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Results
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Hoan N.M.Q … Le-Phuoc D. EAGLE - A Scalable Query Processing Engine for Linked Sensor Data. Sensors 19(20), 2019
Hoan N.M.Q … Le-Phuoc D. A learning approach for query planning on spatio-temporal IoT data. IOT 2018,
Hoan N.M.Q and Le-Phuoc D. An elastic and scalable spatiotemporal query processing for linked sensor data. Semantics’ 2015

https://dblp.org/db/conf/iot/iot2018.html


Connect Sensors to Stream Graphs

Program Semantic-based Perception

Emerging Applications

Integrate Spatial Knowledge into Perception



Declarative Programing for Multimodal Sensor Fusion

Semantic Declarative Programming:
Write a data stream fusion pipeline as a single query: “Compute Drivability Map”?
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Sensor data at different formats and modalities Drivability Map



How???

Ø A query compiler needs the reasoning capability to understand what “Drivability Map” is

Ø Which DNNs can consume camera, LiDARs and HD maps to detect objects/lanes to construct “Drivability Map”? 

Ø How to connect data fusion operations to continuously compute “Drivability Map” ?
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Sensor data at different formats and modalities Drivability Map



How to Fuse Semantic Stream Data?

An example for multiple object tracking  pipeline with Deep Neural Networks (DNNs)

1 2 54 63

1.Detecting 
objects



How to Fuse Semantic Stream Data?

1 2

3

54

2 5 6

6

det(b1,car,0.8), det(b3,car,0.7),
trk(b2,23), trk(b4,5),…

23 2334 55

b1 b5b3
b2

b4

b6 b8 b11b9 b12

b7 b10 b14

b13

det(b5,car,0.8),
trk(b6,23),  trk(b7,5),…

det(b8,car,0.8),
trk(b9,23),  trk(b10,5),…

det(b11,car,0.8), det(b13,car,0.7),
trk(b12,23),trk(b14,5)

3

5
23 5

23

1.Detecting 
objects

2.Propagating object states 
(location,  velocity, ..) into 
future frames

Stream of semantic symbols

An example for multiple object tracking (MOT) pipeline with Deep Neural Networks



How to Fuse Semantic Stream Data?

Visual match

1 2

3

54

2 5 6

6

det(b1,car,0.8), det(b3,car,0.7),
trk(b2,23), trk(b4,5),…

23 2334 55

b1 b5b3
b2

b4

b6 b8 b11b9 b12

b7 b10 b14

b13

34

det(b5,car,0.8),
trk(b6,23),  trk(b7,5),…

det(b8,car,0.8),
trk(b9,23),  trk(b10,5),…

det(b11,car,0.8), det(b13,car,0.7),
trk(b12,23),trk(b14,5)

3

5
23 5

23

5

Streams of semantic symbols ⇒ use rules to represent association hypotheses ⇒ Reasoning

1.Detecting 
objects

2.Propagating object states 
(location,  velocity, ..) into 
future frames

3.Associating 
current
detections with 
previously tracked 
objects, 

4. managing the lifespan of tracked objects to corelate with features of detected objects



Ontology for Semantic Stream Fusion

CV operations

CV Inputs

CV Outputs

An Extension of W3c/OGC Semantic Sensor Network Ontology (SSN)

Ø An abstraction of DNNs as Sensors or Samplers

Ø Unify inputs/outputs of Sensors and DNNs →seamless integration of sub-symbolic with symbolic

Schneider P., .., Le-Phuoc D.: Stream Reasoning Playground. ESWC 2022



Ontology for Semantic Stream Fusion

Semantic Stream in Standardized Data Format 

RDF* (W3C RDF-star and SPARQL-star)

Note that a rule of this kind can only be used for fixed
cameras like in the AI City Challenge scenario, but not in
the scenarios for the KITTI Data sets, where we thus did not
include it in the program. In the following syntax examples,
we show only rules that were used in all scenarios and thus
omit this rule.

ASP-based syntaxes
For ASP developers, we extended the ASP-Core-2 syntax (Cal-
imeri et al. 2020) to accommodate LARS formulas. In par-
ticular, @T↵ is written as ↵@T , �w3↵ written as ↵ [w] and
�w2↵ is written as ↵ in [w] whereby [w] is represented
in the syntax [t sec|min|h] , t is the number of time units
(sec,min, h corresponding to seconds, minutes and hours,
respectively).

With the proposed extension,the hard rules are written in
the listing 1. Similarly, the soft rules are rewritten in listing 2.
Note that, the rules in both two files "hard.ssr" and "soft.ssr"
are similar but the processing engine will learn the weight for
each rule in "soft.ssr".

Listing 1: hard.ssr
//equation (9)

initiates(enters(O),inFoV(O),T):-enters(O)@T

//equation (10)

terminates(leaves(O),inFoV(O),T):-leaves(O)@T

//equation (12)

trklet(Trk,O)@T:-trk(Trk,B)@T,iSO(B,O).

//equation (13)

iSO(B2,O):-iSO(B1,O),trk(Trk,B1),trk(Trk,B2),B1!=B2.

//equation (14)

:~trklet(T1,O),trklet(T2,O),T1!=T2.

//equation (15)

trajectory(trklet(Trk1,O1),T1,trklet(Trk2,O2),T2):-T=T1+T2,

ends(Trk1)@T, starts(Trk2) @ T, starts(Trk1) @ T1.

//equation (17)

antiTrajectory(trklet(Trk,O),T1,occl(O),T2:-occl(O)@T,

not trklet(Trk,O)@T, T=T1+T,T2>0

//equation (18)

antiTrajectory(occl(O),T1,trklet(Ttr,O),T2):-trklet(Trk,O)@T,

T=T1+T2, T2>0

Listing 2: soft.ssr
//equation (3)

enters(O)@T :- det(B,car,S),iSO(B,O), not inFoV(O)[5 sec], S>=0.8.

//equation (4)

leaves(O)@T:-not det(B,car,S)@T[5 sec], iSO(B,O),

not inFoV(O)[5 sec], S>=0.8.

//equation (7)

iSO(B1,O) :- trk(T1,B1)@T, det(B2,OT,S) @ T,

trklet(T1,O), iou(B1,B2).

// equation (8)

iSO(B1,O) :- trk(Trk1,B1) @ T, vMatch(B1,B2), iSO(B2,O),

trklet(Trk2,O), ends(Trk2)@Te, T<Te+3,

trk(Trk2,O2)@Te in [5 sec].

//equation (16)

occl(O)@T1:-trk(Trk1,B1)@T2,trk(Trk2,B2),trklet(Trk1,O)@T2,

Trk1!=Trk2,iou(B1,B2), ends(Trk1)@T1,T1=T2+1.

RDF&SPARQL-based syntaxes
In SSR, before translating to semantic stream based on ASP-
style atoms, the input streams are internally serialized and

stored using RDF data models of CQELS. To make the
RDF-based presentation ready for translating to the ASP
counterparts, the predicates and terms in A are mapped to
globally unique IRI symbols to enable the rule and data
stream exchange following the RDF standard. For instance,
the predicate iSO is mapped to the the isSampleOf pred-
icate of SOSA ontology (Janowicz et al. 2019), which is
the core ontology of SSN (Haller et al. 2019). Similarly, we
present predicate det and trk as the subproperty of predicate
hasResult of SOSA. We use "sosa :" and ":" as the prefix
for the IRIs representation of the predicates for the name
spaces of SOSA and SSR respectively. To write shorter RDF
reifications for n-ary predicates, we use the RDF⇤ syntaxes
proposed in (Keskisärkkä et al. 2019). In this light, listing 3
provides a snippet of RDF representation of semantic streams
in Figure 3.

Listing 3: Semantic Stream Serialization with RDF⇤

// time point/frame 2

<<:det1 :det :b1>> a :car; :hasConfScore 0.8; sosa:resultTime 2.
<<:det3 :det :b3>> a :car; :hasConfScore 0.7; sosa:resultTime 2.
<<:trk23 :trk :b2>> sosa:resultTime 2.

<<:trk5 :trk :b4>> sosa:resultTime 2.

// time point/frame 3

<<:det5 :det :b5>> a :car; :hasConfScore 0.8; sosa:resultTime 3.
<<:trk23 :trk :b6>> sosa:resultTime 3.

<<:trk5 :trk :b7>> sosa:resultTime 3.

From the above RDF representations, we are empowered
to allow RDF&SPARQL developers to write soft rules with
SHACL rule language 3 along with the extension of CQEL-QL.
Morevoer, using RDF and SHACL 4 provides the portability
and interoperability of our semantic stream reasoning pro-
grams. The extension we made here is replacing SPARQL
CONSTRUCT with the corresponding CONSTRUCT of
CQELS-QL which extends SPARQL with the window oper-
ators over RDF Stream. As shown in (Beck, Dao-Tran, and
Eiter 2018), CQELS-QL is subsumed by LARS, therefore, we
can extend its CQELS syntax for writing SPARQL-like rules
that emulate the LARS-based soft rules above. Moreover,
extending SHACL for expressing ASP-like rules is aligned
with the recent proposal for assigning SHACL with negation
a stable semantics (Andresel et al. 2020). Note that we ex-
tend CQESL-QL syntax in (Le-Phuoc et al. 2011) with the
keyword "NAF" to express the default negation of ASP.

Listing 4: SHACL rules with CQELS-QL
//w1, equation (3)

ssr:rule_w_1 a sh:NodeShape;
sh:rule [

a sh:CQELSRule ;
sh:prefixes ssr: ;

sh:construct """

CONSTRUCT {<<?O :enters <ssr:FoV>> @ ?T.}
WHERE {
STREAM <:ssr> {
<<?Dt :det ?B >> @ ?T; :hasConfScore ?S.

?B sosa:isSampleOf ?O .

FILTER (?S > 0.8)
}

NAF STREAM <:ssr> window[5 sec] {
?O :inFOV ssr:FoV.

}

}

""" ;

3https://www.w3.org/TR/shacl-af/SHACL Advanced Features
4https://www.w3.org/TR/shacl/W3C Shapes Constraint Language

(SHACL)

DNN models

DNN Inputs

DNN Outputs

Haler A., Le-Phuoc D. … The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. 
Semantic Web 10(1): 9-32 (2019)
Janowicz K., …Le-Phuoc D., ..: SOSA: A lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56: 1-10 (2019)

Base64 encoding for 
Tensor to embedded in 
JSON/XML serialization



Semantic Stream Reasoning Program

v Semantic Reasoning Program 𝚷 is a set of weighted rules 𝒓 in the form: 𝝎 ∶ 𝜶 ← 𝜷

Ø𝛼, 𝛽 are logic/symbolic formulas (Answer Set Programming program with sliding windows, 

i.e. LARS program) and 𝜔 ∈ ℝ ∪ {𝑥} is the weight of the rule

Ø If 𝜔 = 𝑥, then 𝑟 is a hard rule, otherwise 𝑟 is a soft rule

v The semantics of 𝚷 is given by

Ø the answer streams of 𝐒 the LARS program 𝚷𝐒 obtained from 𝚷 by dropping the weights

Ø and for all 𝑟 where 𝐒 is violated 𝛼 ← 𝛽 ⟹ 𝐒 gets a probability 𝑷𝒓𝜫 𝑺 calculated from 

the weights of the rules retained for 𝚷𝐒 following Markov Logic Network

Le-Phuoc D. et al. A Scalable Reasoning and Learning Approach for Neural-Symbolic Stream Fusion. AAAI 2021



A semantic reasoning program in ASP language

hard-rules.ssr soft-rules.ssr

All soft rules will be learnt to assign weights

Hard rules are traditional logic rules

ASP: Answer Set Programing



Hard rules as knowledge-driven constraints

v Common Sense knowledge

Ø Event Calculus :

ØAxioms to enforce the Law of inertia 

ØAxioms on Trajectory, cause and effects, etc

Ø Spatial and temporal reasoning rules: RCC-5, RCC-8, etc

v Domain-specific knowledge

Ø Object motion constraints and patterns

Ø Optical laws, e.g. optical flow

Ø Expert Knowledge embedded in Objects, Buildings and Roads



CQELS-RL rules : SHACL+ SPARQL-star +sliding windows

Soft rules as association hypotheses (if-then rules)

The rule to trigger the event "a car enters the Field of View of a camera" 
𝝎 ∶ 𝜶 ← 𝜷

logic rule with sliding windows

weight to be learnt

Ø det (B,car,S) → a detected car at 
bounding box B with a confidence score S

Ø iSO(B,O): a bounding box B is a sample of 
object O (sosa:isSampleOf)

Ø inFoV(O): object O is in the Field of View

Rule Language of Answer Set 
Programming



A semantic reasoning program in CQELS-RL

Syntaxes and rules are long and error-prone

Can we automate it?

Use language model+ Semantic graphs

Reasoning program integrates both SORT and DeepSORT for Multi Object 
Tracking across Mutiple Cameras



Semantic Stream Reasoning Framework

Le-Phuoc D. et al. A Scalable Reasoning and Learning Approach for Neural-Symbolic Stream Fusion. AAAI 2021

Nguyen D. M…Le-Phuoc D. Towards autonomous semantic stream fusion for distributed video streams. DEBS 2021
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on reasoning programs with learnt weights

→ incremental reasoning algorithms



Connect Sensors to Stream Graphs

Program Semantic-based Perception

Emerging Applications

Integrate Spatial Knowledge into Perception



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  r��11  r��SUMMER 2014 IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  r��11  r��SUMMER 2014

Camera

Camera

Short-Range Radar Systems
Long-Range Radar Systems*
Camera
Stereo Camera

Stereo Camera

18°

18°

18°

56°

90°

56°

56°

150°

150°150°

150°

90°

44°

56°

200 m

60 m

60 m 200 m200 m 80 m80 m 130 m

40 m

80 m

FIG 3 The Bertha Benz experimental vehicle and it’s sensors. Depicted in orange are the sensing fields of the long and mid range radar sensors. Marked 
in blue are range and field of view of the used wide angle cameras. The central stereo vision system is shown in green.Julius Ziegler et al Making Bertha Drive—An Autonomous Journey on a Historic Route,  IEEE Intelligent Transportation Systems Magazine ( Volume: 6, 

Issue: 2, Summer 2014 )

Mercedes-Benz S-Class S 500 INTELLIGENT DRIVE

Perception of Ego-Vehicle:
In-Vehicle sensors provide limited view of the world



Cooperative Perception for ADAS and ITS : V2X and I2V

V2V: Vehicle to Vehicle I2V: Infrastructure to Vehicle



Distributed Semantic Streams for ADAS and ITS : V2X, I2I and I2V
Enhance Vehicle’s Perception with V2I data streams
Ø Intersection Movement Assist with explainable 

messages
Ø Participants send intentions and get data-supported 

feedback that explains the reason why they are either 
approved or rejected. For example, Car A intends to 
turn left while Motorcycle B has the priority

Enhance Intersection’s Perception with I2I and 
I2V data streams
Ø Active option zone protection system based on 

swarm



Smart Factories with Intelligent Mobile Robots



Integrate SLAM Components to Build Semantic Streams in ROS

Rosinol A, Violette A, Abate M, et al. Kimera: From SLAM to spatial perception with 3D dynamic scene graphs. The International Journal of Robotics Research. 2021



Fuse Different Semantic Abstraction Levels of Semantic SLAM



Connect Sensors to Stream Graphs

Program Semantic-based Perception

Emerging Applications

Integrate Spatial Knowledge into Perception



Semantic SLAM can use Semantic Building Information

R. W. M. Hendrikx, Pieter Pauwels, Elena Torta, Herman P. J. Bruyninckx, M. J. G. van de Molengraft: Connecting Semantic Building Information 
Models and Robotics: An application to 2D LiDAR-based localization. ICRA 2021
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4.2.4. Floor plan generation
The CSV downloaded from GraphDB is used as input for the Python

code with Matplotlib. The Python code uses the linestrings of the
building elements to plot the lines between the coordinates of those
linestrings, using Matplotlib in PNG format. This conversion process
can be used as further input for the creation of maps for indoor robot
navigation (see also de Koning et al. [59]). All those plotted lines
together form a map of, in this case, the 8th floor of Atlas (see Fig. 6).
The Python code plots the different building elements in different
colours to highlight the different semantics of the building elements
that could be used by the path planner or the localization algorithm
to improve performance. This also shows the number of linestrings an
element consists of, so four for the columns and two for the doors. The
walls have, as explained, just one linestring per room, but by exporting
all rooms, the walls have an inner and an outer line. Furthermore, each
space can be assigned its own 2D and 3D geometry, which is kept out
of the process in this particular test case, but has been done elsewhere
with the OBJ format, for example [61,62].

5. Validation

In this section, the two investigated and implemented data flow
methods are evaluated against the available criteria in Section 3.4.
The evaluation is done by using the generated maps for localization
as described by [58] (Route 1 - IFC-JSON file transfer - TM1.3) and
for localization and navigation connecting the generated gridmap to
state-of-the-art navigation toolboxes provided by the Robotic Operating
System (Route 2 - LBD Server - TM2.2). For both methods, the following
steps are followed during the validation:

1. Localization is done based on the 2D map generated from the
data obtained from the BIM model.

2. The robot navigates from one room of the building to another in
a tele-operated (Route 1) or autonomous manner (Route 2)

3. The features extracted from the 2D LiDaR scanner during navi-
gation are compared with the features of the generated maps.

For both Route 1 and Route 2, we achieved semantic localiza-
tion and autonomous navigation, respectively. Both routes are tested
in the Atlas building on the TUe campus. Several simulations and
real-world tests were performed, and the final real-world tests were
video-recorded, including a visualization of the data available for the
robot to perform its localization and navigation. The videos showing
the robot localizing (Route 1) and autonomously navigating (Route 2)
are publicly available.37 In principle, both tests were successful in the
sense that:

1. data can be transferred successfully from BIM model to robot
world model in both cases;

2. robot localization and navigation is feasible in both cases;
3. the data represented by the BIM model and robot world model
is spatially accurate to the extent that localization is possible;

4. the robot has semantic knowledge of spaces and connecting inter-
faces (e.g., rooms, areas and doors), allowing navigation;

5. the robot has access to material properties in relation to its sensing
capabilities (e.g. glass);

6. the robot can query required data efficiently during operation.

While these outcomes can be expected, these tests were also aimed
at investigating how the two data transfer approaches work in practice.
While it is recognized that the LBDServer approach (Route 2 - TM2.2) is
more extensible, more standard, and potentially more data-rich because
of the live data connection, it is also recognized that the IFC-JSON

37 https://youtube.com/playlist?list=PLR6weRZsGeth5ML8j0JwxRRMx8nO
E04D0

Fig. 7. Left side, view of the building. Right side 2D map with overlapping LiDaR
readings (green). The room location on the 2D map is spatially inaccurate as can be
seen by the LiDaR readings detecting the room corner being shifted w.r.t. the expected
room location on the map. Furniture is detected by the LiDaR scanner, but is not
represented in the map.

file-based approach (Route 1 - TM1.3) is more light-weight and easier
to set-up as the web-based infrastructure and its connections are not
needed. Transfer Method 1.3 (IFC-JSON based) is a lot more manual,
however, and much less standard, leading to a higher risk for errors and
lower scalability. If this approach can be implemented on a web server
(see TM 3.1), this would create a lot of added value and potential.

For the different criteria outlined in Section 3.4, a more elaborate
validation is given in the below Sections.

5.1. The data represented by the BIM model needs to be spatially accurate

In order to ensure correct localization, the spatial accuracy of the
maps derived from the BIM data should be high. In other words, given
that there are no unmodelled elements in the space where the robot
navigates, sensors’ readings should match the expected readings based
on the map layout. In experiments conducted with both methods, we
have seen that that is not always the case. Fig. 7 shows the map used for
semantic localization (Route 1). By superimposing the LiDaR readings
to the generated 2D map, it can be seen that the corner of the room is
detected closer to the robot than what is reported on the map.

Other elements such as stairs might also be reported incorrectly on
the map because they were modelled incorrectly in the BIM model. This
is an important problem or challenge, because many as-designed BIM
models differ from the real world. The challenge here is to make this
difference as small as possible, and in any case below an acceptable
tolerance level. This tolerance level for differences between stored
building geometry and LiDaR scan depends on the case in which the
robot navigation is being used. Security- and safety-critical cases need
a much smaller tolerance level compared to low-cost and approximate
navigation cases. In our current case, we are on the accuracy level of
the second: approximate navigation, since our BIM model clearly needs
further updates to be usable for autonomous navigation. As this article
investigated primarily data transfer methods first, future research can
now investigate in more detail how to make updates to the live digital
twin or BIM model based on on-site measurements to further improve
model accuracy.

Fig. 8 shows a partial view of the map used for autonomous naviga-
tion (Route 2). According to the robot’s location, the modelled stairs
should be perceived by the robot’s LiDaR scanner. However, that is
not the case which implies that the stairs were modelled closer to the
location of the robot than they are in reality. Indeed, as can be seen
in Fig. 8, the staircase are more to the right in reality, and behind the
column.

5.2. The robot needs to have semantic knowledge of spaces and connecting
interfaces (e.g., rooms, areas and doors)

Overall, in both cases, there is good availability of connectivity
information of rooms and spaces and elements. As the second transfer
method (TM 2.2 - LBD Server) preserves more data and semantics, this

Fig. 3. Graph representation of the semantic entities from the BIM model and the geometry representations that are perceivable by the sensor, in this case
the 2D LiDAR. Different domains (i.e., simple feature geometry, IFC entities and navigational relations) are shown in different colors. The id of entities
that are not part of the BIM model are randomly generated.

Fig. 4. The map considered in this work, as generated from the BIM model, with static features relevant for the LiDAR sensor. The features are annotated
with the types of the objects they represent. The paths driven by the robot are shown, as determined by our localization approach, starting at different
positions. All three paths finish at their respective starting positions. The final trajectory was recorded while three actors were actively obscuring the laser
field of view. Notice that at some points small jumps occur in the map position, because of new associations with structural elements of the building.

Export IFC-JSON

add JSON-LD @context

Query Semantic objects (JSON-LD API)

Transform Objectplacement to Storey coordinates  

Convert to toplogically consistent simple geometry

export JSON-LD property graph

Populate PostgreSQL (all entities) and 
PostGIS (geometry entities) tables

Building Model

Fig. 5. Conversion from the BIM model to the representation used by the
robot, stored in a database, as used in this work. This database contains
both the property graph entities and the geometric entities (using PostGIS).

found in its sensor data, so called sensor features. This map-
query-first approach allows to extract only sensor features
that are currently of interest. The current implementation
supports the extraction of line features, corner features and
box features from the sensor data, based on a split-and-merge
weighted line fitting implementation from [24], [25]. The
corner and box features are obtained by checking if the lines
support the well-known L-shape used often for rectangular
objects. In the configuration of the detectors, we demand

that the line segments used for wall and corner detection
are sufficiently long to be insensitive to open doors. While
this threshold is currently manually set to 1.2m, it could
be derived from the IfcDoor representations in the BIM
model if these are present.

The measurements are added to a factor graph containing
the robot poses over a variable horizon, as well as range-
bearing measurements to perceived objects. For columns and
corners we use the well-known range-bearing measurement
model. For walls, we use a model that constrains the angle
and distance to the wall, but not the position alongside it.
If a match in the sensor data is found based on the features
suggested by the map (e.g., a line segment that falls within
the line segment of the wall representation up to a threshold),
the feature and measurement get added to the factor graph.
We explicitly reference the id of the features in the factor
graph, making the data associations with the map explicit.
This feature-based approach has benefits over scan matching
based approaches such as ICP, because it first checks if the
sensor data supports the primitive feature suggested by the
map to be usable. This also allows to disable individual
features without removing them from the map by modifying
their perceivable_by relation.
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Fig. 8. Left side, view of the building. Right side 2D map with overlapping LiDaR
readings (red). The stairs’ location on the 2D map is spatially inaccurate as can be
seen by the LiDaR readings detecting free space instead of the stairs.

Fig. 9. More detailed BIM models can include more dynamic data, in which case
encoding and recognition of interfaces with spaces potentially becomes significantly
more complex.

data transfer method performs better than TM 1.3 (IFC-JSON file). In
the former case, a clear topology graph is easily available, including
interfaces between elements and spaces, so the space topology and
element interfaces can be easily retrieved. This is much more complex
in TM1.3, where much of this data is flattened or more indirectly
encoded in the JSON version of IFC.

It is worthwhile to note here that some structural elements modelled
in the BIM model and extracted by either of the data transfer methods
change position over time (e.g., doors can be open or closed). While
this is of limited impact in our case as we used a limited sample file
(only door positions change), this can become a much more significant
challenge if more furniture is made available in the model as is for
example the case in the model displayed in Fig. 9.

For the case of the doors, the difference of status (e.g., open vs
closed) is important when using maps derived from the data of a BIM
model for navigation and localization. Namely, a closed or locked door
clearly occludes the path towards a navigation goal which needs to be
taken into account during path planning. For the work addressed in this
paper, we assumed all doors closed for the map generated using Route
1 and all doors open for the map generated using Route 2. However,
this assumption was not always met as can be seen in Fig. 10 for Route
1 and in Fig. 11 for Route 2. In the case of Fig. 10, in fact, a solid wall
was expected, while in reality a door was presented. So the BIM model
did not match with reality. In the case of Fig. 11, an open door was
expected, while it was fully closed in reality.

5.3. The robot needs to be aware of material properties and the relation to
its sensing capabilities (e.g. glass)

Mobile robots are mostly equipped with 2D or 3D LiDaR scanners
which are sensitive to glass surfaces. A glass surface might be detected
as free space because the LiDaR beams pass through the glass as shown
in Fig. 12 (Route 2). This might result in the wrong navigation decisions
by the robot. When the building digital twin provides information on

Fig. 10. Left side, view of the building. Right side 2D map with overlapping LiDaR
readings (green). The door is represented as closed in the map (red lines) but it is open
in reality and detected as open by the lidar (dotted green line).

Fig. 11. Left side, view of the building. Right side 2D map with overlapping LiDaR
readings (red). The door is represented as open in the map but it is closed in reality.

Fig. 12. Left side, view of the building. Right side 2D map with overlapping LiDaR
readings (red). The robot faces a glass wall and the LiDaR readings pass through
indicating free space.

material properties, the robot can adjust its path or correctly interpret
the LiDaR readings.

In TM1.3 (IFC-JSON file), material properties had been lost during
the conversion process. It is possible to still include this information in
the eventual JSON data by modifying the data transfer procedure. Be-
cause of the direct character of the transfer (not extensible), this easily
becomes an error-prone and unscalable method. In contrast, in TM2.2
(LBD Server), further material characteristics are readily available, as
well as smart building data (BRICK ontology), and potentially even
damage data (DOT ontology). They can simply be queried on demand
and then used. In this sense, the second approach that relies on TM2.2
performs better because of its higher level of extensibility.

5.4. The robot needs to be able to query this data efficiently (real time)
during operation, through an abstracted programming or query interface

For both data routes, maps are generated offline from the data ex-
tracted from the BIM model. For Route 1, all spatial and semantic data
were stored in a database deployed on the robot which was queried
in real-time during movements. For Route 2, the data to create the
gridmap were queried in real-time before starting navigation. In that
sense, both methods contained manual operations, leading to needed
improvements to make the procedures live and real-time. The amount
of manual operations is however considerably smaller in the case of
TM2.2 (Route 2), as most of the operations do occur through queries
against an online database server.

In any case, as a conclusion, a very important challenge arose
here. Namely, the robot performs its localization and navigation always
locally in ROS (on the ‘edge’) for obvious safety and computational

Fig. 3. Graph representation of the semantic entities from the BIM model and the geometry representations that are perceivable by the sensor, in this case
the 2D LiDAR. Different domains (i.e., simple feature geometry, IFC entities and navigational relations) are shown in different colors. The id of entities
that are not part of the BIM model are randomly generated.

Fig. 4. The map considered in this work, as generated from the BIM model, with static features relevant for the LiDAR sensor. The features are annotated
with the types of the objects they represent. The paths driven by the robot are shown, as determined by our localization approach, starting at different
positions. All three paths finish at their respective starting positions. The final trajectory was recorded while three actors were actively obscuring the laser
field of view. Notice that at some points small jumps occur in the map position, because of new associations with structural elements of the building.
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Fig. 5. Conversion from the BIM model to the representation used by the
robot, stored in a database, as used in this work. This database contains
both the property graph entities and the geometric entities (using PostGIS).

found in its sensor data, so called sensor features. This map-
query-first approach allows to extract only sensor features
that are currently of interest. The current implementation
supports the extraction of line features, corner features and
box features from the sensor data, based on a split-and-merge
weighted line fitting implementation from [24], [25]. The
corner and box features are obtained by checking if the lines
support the well-known L-shape used often for rectangular
objects. In the configuration of the detectors, we demand

that the line segments used for wall and corner detection
are sufficiently long to be insensitive to open doors. While
this threshold is currently manually set to 1.2m, it could
be derived from the IfcDoor representations in the BIM
model if these are present.

The measurements are added to a factor graph containing
the robot poses over a variable horizon, as well as range-
bearing measurements to perceived objects. For columns and
corners we use the well-known range-bearing measurement
model. For walls, we use a model that constrains the angle
and distance to the wall, but not the position alongside it.
If a match in the sensor data is found based on the features
suggested by the map (e.g., a line segment that falls within
the line segment of the wall representation up to a threshold),
the feature and measurement get added to the factor graph.
We explicitly reference the id of the features in the factor
graph, making the data associations with the map explicit.
This feature-based approach has benefits over scan matching
based approaches such as ICP, because it first checks if the
sensor data supports the primitive feature suggested by the
map to be usable. This also allows to disable individual
features without removing them from the map by modifying
their perceivable_by relation.
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Fig. 4. The map considered in this work, as generated from the BIM model, with static features relevant for the LiDAR sensor. The features are annotated
with the types of the objects they represent. The paths driven by the robot are shown, as determined by our localization approach, starting at different
positions. All three paths finish at their respective starting positions. The final trajectory was recorded while three actors were actively obscuring the laser
field of view. Notice that at some points small jumps occur in the map position, because of new associations with structural elements of the building.

Export IFC-JSON

add JSON-LD @context

Query Semantic objects (JSON-LD API)

Transform Objectplacement to Storey coordinates  

Convert to toplogically consistent simple geometry

export JSON-LD property graph

Populate PostgreSQL (all entities) and 
PostGIS (geometry entities) tables

Building Model

Fig. 5. Conversion from the BIM model to the representation used by the
robot, stored in a database, as used in this work. This database contains
both the property graph entities and the geometric entities (using PostGIS).

found in its sensor data, so called sensor features. This map-
query-first approach allows to extract only sensor features
that are currently of interest. The current implementation
supports the extraction of line features, corner features and
box features from the sensor data, based on a split-and-merge
weighted line fitting implementation from [24], [25]. The
corner and box features are obtained by checking if the lines
support the well-known L-shape used often for rectangular
objects. In the configuration of the detectors, we demand

that the line segments used for wall and corner detection
are sufficiently long to be insensitive to open doors. While
this threshold is currently manually set to 1.2m, it could
be derived from the IfcDoor representations in the BIM
model if these are present.

The measurements are added to a factor graph containing
the robot poses over a variable horizon, as well as range-
bearing measurements to perceived objects. For columns and
corners we use the well-known range-bearing measurement
model. For walls, we use a model that constrains the angle
and distance to the wall, but not the position alongside it.
If a match in the sensor data is found based on the features
suggested by the map (e.g., a line segment that falls within
the line segment of the wall representation up to a threshold),
the feature and measurement get added to the factor graph.
We explicitly reference the id of the features in the factor
graph, making the data associations with the map explicit.
This feature-based approach has benefits over scan matching
based approaches such as ICP, because it first checks if the
sensor data supports the primitive feature suggested by the
map to be usable. This also allows to disable individual
features without removing them from the map by modifying
their perceivable_by relation.
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3D CAD Models Can Be Extracted to Knowledge Graph
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(i) Existing assembly hierarchies obtained from CAD files are used 
for Assembly-Subassembly-Part relations, similar to the approach 
in [54]. This is termed as the Assembly Hierarchy Subgraph, and it 
contains 3 types of nodes: part, subassembly, and assembly, which 
are linked by the relation type subset_of in hierarchical order.  

(ii) The second type of relations between individual parts are created 
using global similarity of feature-vectors representing each indi-
vidual part. The subgraph containing nodes of type part and 
similarities between these parts given by the (weighted) relation 
similar_to is termed the Part Similarity Subgraph. These global 
similarity computations are performed using the respective vec-
tor embeddings of the part nodes. 

Considering the intended application of this method for large design 
databases, there are an enormous number of part-to-part similarity re-
lations that could potentially be created, with a wide range of edge 
weights which will affect the goal of efficient search within the KG. 
Previous work on complex networks has shown that making networks 
sparse by removing insignificant relations has the potential for huge 
improvements in speed for graph clustering or community detection, 
while maintaining the original nature of the graph [55]. This can be 
achieved for weighted graphs at the global scale using Edge-Weight 
Thresholding; work by Yan et al [62] demonstrates the robust nature 
of network structure when weight thresholding is applied. In particular, 
weight-thresholded graphs with a Scale-Free degree distribution have 
been shown to maintain the overall topology of the complete graph. 
Inspired by similar approaches applied to brain networks in neurosci-
ence as seen in [58] and [59], the construction method is fine-tuned by 
constructing a sparse yet meaningful graph through Global Weight 
Thresholding as described in the following paragraph. 

Let the Part Similarity Subgraph, G, be described by its symmetric 
weighted adjacency matrix W, where the elements Wab denote the 
weight of the edge connecting nodes a and b. Given a limiting value ̋ α˝, 

the weight thresholded graph G’ then has an adjacency matrix W’, such 
that all weights below this value are discarded i.e., if Wab < α then 
W’ab = 0. This threshold α is chosen such that the resulting graph G’ is a 
scale-free network with a heavy-tailed degree distribution. A scale-free 
network is one where the fraction of nodes P(x) with degree × is close 
to a power law, i.e., P(x)∝x−γ. This phenomenon indicates that there is a 
small but significant proportion of nodes with a much higher degree 
than most other nodes. This process of simplifying the graph ensures a 
balance between representativeness and compactness at the construc-
tion level, which speeds up search and detection of structure within the 
Knowledge Graph. 

Nodes and relations can be extended where data is available, for 
instance, adding Finite Element Analysis (FEA) or Kinematic Simulation 
data to create localized subgraphs to potentially predict the behavior of 
new data. This method provides a starting framework for such additions; 
the initial relationships are created considering the KG’s objective of 
enabling optimal search and inference using a hybrid bottom-up con-
struction method. Graph data is represented by the Labeled Property 
Graph model, which allows both nodes and edges of the graph to be 
described by key-value pairs which can contain further metadata. This is 
advantageous in the case of a design graph, enabling a flexible schema 
representation for CAD parts and assemblies, which have different 
relation types and sets of properties. Fig. 1 summarizes the process of 
constructing the Product Design Knowledge Graph. 

4. Product design knowledge graph: implementation 

4.1. Source data & annotation 

The KG construction is implemented with data from the FabWave 
repository described by Bharadwaj et al [37]. Created as a cyber- 
infrastructure to automate collection of CAD and related 
manufacturing data from academic and open sources, it consists of over 

Fig. 1. Construction Process & Schema of the Design Knowledge Graph.  
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3D Shape Knowledge Can Be Queried with SPARQL?

W. Nie, Y. Wang, D. Song and W. Li, "3D Model Retrieval Based on a 3D Shape Knowledge Graph," in IEEE Access, vol. 8, pp. 142632-142641, 
2020, doi: 10.1109/ACCESS.2020.3013595.

W. Nie et al.: 3D Model Retrieval Based on a 3D Shape Knowledge Graph

FIGURE 2. Framework of our approach, composed of two parts: knowledge graph construction and model retrieval. The k-means method
is utilized to generate geometric words for KG construction. The graph embedding method is used to handle feature learning for model
retrieval.

employed the relation score module to well fuse the point
cloud feature and the view feature of the 3D model, and
described the 3D model with the relations of the point and
the multi-views.
The first 3D descriptor based on view is the lighting field

descriptor [21]. The similarity between the two 3D models is
measured by the similarity of 2D elements of the correspond-
ing two view sets. Likewise, GIFT [22] measures the Haus-
dorff distance between the corresponding sets of views. LFD
and GIFT can be regarded as traditional 3D shape represen-
tation methods. Su et al. [9] recently proposed an end-to-end
multi-view convolutional neural network (MVCNN) to gen-
erate multiple 2D projection features. Seeking to exploit the
structural information in views of a 3Dmodel, DeepPano [23]
converted the 3D shape into a panoramic view on each axis.
However, this method only describes the surface information
of the 3D model, and lacks comprehensively analysis of
the surface structure. PANORAMA-NN [24] used a CNN
to learn the features from PANORAMA views. Sfikas pro-
posed a method of capturing PANORAMA views’ features
to maintain continuity of 3D models and minimize data pre-
processing by constructing enhanced image representations.
Zhang et al. [25] proposed an inductive multi-hypergraph
learning algorithm, which aimed to learn the optimal pro-
jection of multimodal training data, and to obtain the pro-
jection matrix and the optimal combination weights of
multi-hypergraph simultaneously. In order to reduce the devi-
ation caused by measuring the distance between the 3D
objects, Gao et al. [26] employed the higher order relation-
ships between the 3D objects to get the similarities of them.
He et al. [27] proposed a novel triplet-center loss instead of
the classic softmax for 3D model representation to learn the
discriminative features. Liu et al. [28] proposed a novel graph
matching method to handle 3D model’s representation and
retrieval problem. Here, the author utilized the local structural
information to construct graph model and hyper-graph model
is used to save global structural information. All of these
existing methods focus on leveraging the single-branch deep
learning models for the classification and retrieval task and
ignore the sharing of information between models.
All of these methods also applied the popular deep learning

approach to design the relevant network for 3Dmodel feature
learning. This approach relies on the large scale of training

data and parameter learning, which are difficult to use in
solving the cross-domain retrieval task.

B. KNOWLEDGE GRAPH
In this paper, we for the first time create a 3D shape knowl-
edge graph for 3D model retrieval. Traditionally, many rec-
ommendations and retrieval methods have been proposed
based on the knowledge graph in the NLP field. An intuitive
approach to enrich the query representation utilizes textual
attributes of related entities. Xiong andCallan [29] aim to find
better expansion terms in the related entities’ descriptions
which further facilitate to extract richer evidence to rank
features. Another way for retrieval using knowledge graphs
is to build the entities as a source of additional connec-
tions between queries and documents. Liu and Fang [30]
discover a latent space between query and documents, and
unsupervised models are proposed to connect queries and
documents [30], [31].
A more recent trend for entity-based retrieval models is to

firstly build the representation for entity-based text and then
improve the word-based ranking. Hasibi et al. [32] uses the
surface forms and entity names to build an entity-oriented
language model, which improves the performance of classic
word-based retrieval. Garigliotti and Balog [33] utilize the
type information for entity retrieval by combing term-based
and type-based similarities. Contexts are also a powerful tool
to define neighbor relations [34]. All of the above meth-
ods focus on the text and document data and prioritize the
sequence data. These methods provide us numerous ideas for
the 3D model retrieval problems.
Representation learning in heterogeneous graphs need to

consider multiple types of nodes and edges, which is a chal-
lenging problem [35]–[37]. Our knowledge graph is hetero-
geneous, since we design two kinds of entities and edges to
capture both the geometric structure information and the class
information.

III. OUR APPROACH
In this section, we introduce our approach in detail. The
framework of this study is shown in Fig. 2. The full frame-
work mainly includes three steps. The first step is knowl-
edge graph construction which is constructed in advance.
We utilize the PointNet++ model [10] to segment each 3D

142634 VOLUME 8, 2020



3D CAD models as Priors for training 3D object detectors

Figure 2. Can we learn deep detectors for real images from non-photorealistic 3D CAD models? We explore the invariance of deep features

to missing low-level cues such as shape, pose, texture and context, and propose an improved method for learning from synthetic CAD data

that simulates these cues.

information despite missing low-level cues. We expect the
network to learn different invariances depending on the task
it was trained on.

Quantifying such invariances could help better under-
stand DCNN models and impove transfer to new domains,
e.g., to non-photorealistic data. A small number of papers
have started looking at this problem [9, 26, 13], but many
open questions remain, such as: are DCNNs invariant to ob-
ject color? Texture? Context? 3D pose? Is the invariance
transferable to new tasks?

With the help of images synthetically rendered from 3D
models, we design a series of experiments to “peer into the
depths” of DCNNs and analyse their invariance to cues, in-
cluding ones that are difficult to isolate using real 2D im-
age data. We make surprising discoveries regarding the
representational power of deep features. In particular, we
show that they encode far more complex invariances to cues
such as 3D pose, color, texture and context than previously
accounted for. We also quantify the degree to which the
learned invariances are specific to the training task.

Based on our analysis, we propose a method for zero-
or few-shot learning of novel object categories that gener-
ates synthetic 2D data using 3D models and a few texture
and scene images related to the category. An advantage
of our approach is that it drastically reduces the amount of
human supervision over traditional bounding-box labeling
methods. This could greatly expand available sources of vi-
sual knowledge and allow learning 2D detectors from the
millions of CAD models available on the web. We present
experiments on the PASCAL VOC 2007 detection task and
show that when training data is missing or limited for a
novel category, our method outperforms both training on
real data and the synthetic method of [22]. We also demon-
strate the advantage of our approach in the setting when the
real training data comes from a different domain than target
data using the Office [18] benchmark.

To summarize, our contributions are three-fold:

• we gain new and important insights into the cue invari-
ance of DCNNs through the use of synthetic data,

• we show that synthetic training of modern large-scale

DCNNs improves detection performance in the few-
shot and dataset-bias scenarios,

• we present the largest-scale evaluation of synthetic
CAD training of object detectors to date.

2. Related Work

Object Detection. “Flat” hand-designed representations
(HOG, SIFT, etc.) have dominated the object detection lit-
erature due to their considerable invariance to factors such
as illumination, contrast and small translations. In combi-
nation with discriminative classifiers such as linear SVM,
exemplar-based [14] or latent SVM [4], they had proved
powerful for learning to localize the global outline of an ob-
ject. More recently, convolutional neural networks [8] have
overtaken flat features as clear front-runners in many image
understanding tasks, including object detection. DCNNs
learn layered features starting with familiar pooled edges
in the first layer, and progressing to more and more com-
plex patterns with increasing spatial support. Extensions
to detection have included sliding-window CNN [19] and
Regions-CNN (RCNN) [5].

Understanding Deep CNNs. There has been increasing
interest in understanding the information encoded by the
highly nonlinear deep layers. [27] reversed the computation
to find image patches that most highly activate an isolated
neuron. A detailed study of what happens when one trans-
fers network layers from one dataset to another was pre-
sented by [26]. [13] reconstruct an image from one layer’s
activations, using image priors to recover the natural statis-
tics removed by the network filters. Their visualizations
confirm that a progressively more invariant and abstract rep-
resentation of the image is formed by successive layers, but
they do not analyse the nature of the invariances. Invariance
to simple 2D transformations (reflection, in-plane rotation)
was explored by [9]. In this paper, we study more complex
invariances by “deconstructing” the image into 3D shape,
texture, and other factors, and seeing which specific combi-
nations result in high-layer representations discriminant of
object categories.
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How about BIM for Roads?

Karen Castañeda, Omar Sánchez, Rodrigo F. Herrera, Eugenio Pellicer, Hernán Porras, BIM-based traffic analysis and simulation at road intersection 
design, Automation in Construction, Volume 131, 2021

Automation in Construction 131 (2021) 103911

10

decision-making processes by better understanding design supported by 
visualization, considering that the BIM model is a virtual project replica. 
In addition, road intersection analysis involves evaluating the project's 
impact on the environment, which allows identifying effects on trees, 
utility service networks, rivers, farms, buildings, and existing roads. This 
evaluation requires integrating and analyzing the project scope and the 

existing site conditions. Thus, the traffic analysis is improved from the 
BIM implementation because the simulation scenario uses the existing- 
conditions BIM model. Modification of project parameters allows 
analyzing the new scope and its impact quickly and automatically. 
Adding any new characteristics to the visualization allows making better 
decisions in the analysis of alternatives. 

Fig. 5. Existing conditions BIM model.  

Fig. 6. The collaborative workflow in the bridge pre-dimensioning.  
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6. Conclusions 

The main theorical contributions of this work are the creation of a 
methodological framework for traffic analysis through the application of 
Building Information Modeling; the proposal for an integration of geo-
metric road design and traffic analysis in a BIM digital model; the in-
formation process required for a traffic analysis at road intersection 
when it is applied BIM simulations; and the integration of traffic infor-
mation and others BIM model specialties, e.g., structural, architectural, 
mechanical, electrical and plumbing models. The BIM methodological 
framework for traffic analysis and simulation at road intersections in 
five principal steps: 1) BIM models and traffic information collection; 2) 
BIM model configuration; 3) BIM simulation, analysis, and calibration; 
4) BIM costs analysis and documentation; and 5) alternatives compari-
son and recommendations. 

The methodological framework application shows the potential of 
the BIM approach to improving processes associated with the traffic 
analysis at road intersections. The BIM model developed by other design 
disciplines is used as a simulation platform, avoiding the need to develop 
an independent model for traffic analysis. Thus, the information from 
the traffic analysis is integrated into the BIM model, promoting the 
reduction of design flaws both in the traffic analysis and in other design 

Fig. 9. BIM models of the road intersections alternatives analyzed.  

Table 6 
Service levels and costs for the road intersections alternatives analyzed.  

Id Alternative Service 
Level 

Variable Estimation 

1 Existing road 
intersection 

F Construction cost 
(US) 

– 

Land acquisition 
(m2) 

– 

2 Level-canalized 
intersection 

E Construction cost 
(US) 

$ 270,860 

Land acquisition 
(m2) 

3452 

3 Roundabout 
intersection 

E Construction cost 
(US) 

$ 760,200 

Land acquisition 
(m2) 

14,247 

4 Trumpet intersection B Construction cost 
(US) 

$ 
3,048,973 

Land acquisition 
(m2) 

42,175  
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And Semantic City Models?

Kolbe, T.H., Donaubauer, A. (2021). Semantic 3D City Modeling and BIM. In: Shi, W., Goodchild, M.F., Batty, M., Kwan, MP., Zhang, A. (eds) Urban 
Informatics. The Urban Book Series. Springer, Singapore.
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Fig. 34.1 Different disciplines and their approaches to the definition, generation, and usage of
urban 3D/4D models

Data models and methods developed in the field of computer graphics (CG) and
gaming aim at the efficient and high-quality 3D visualization of the cityscape and the
elements in it. Thus, VRmodels are in the main focus of CG, containing information
on geometry and (graphical) appearance. 3D objects are typically structured in so-
called scene graphs, which allow for the definition and multiple instantiation of
prototypical shapes and realize a hierarchical aggregation. Scene graphs may also
contain light sources, virtual cameras, and information about the environment like
fog density, andmay provide the means for object animation, describing the dynamic
behavior of objects, and user interaction (see, e.g., Foley et al. 1995). In CG, objects
are typically modeled in a way that best supports rendering and visualization, which
may suggest the aggregation of objects which might not be considered as a unit from
a semantic point of view. The representation of semantic information is not a focus
of CG and is often neglected.

Models andmethods from the field of training simulation and computer games are
quite similar to CGwith respect to the representation of 3D objects. In addition, these
models support the description of object physics (like weight, elasticity, mechanical
connections, etc.), kinematic modeling, and complex object behaviors, in order to
describe the functions and interactions to be considered by the simulator. Like in
CG, object semantics are often not considered, apart from simulator control data.

The planning and construction domain focuses on the representation of man-
made objects in fine detail in order to support the design and construction processes.
While in the past computer-aided architectural design (CAAD) was mainly used
to represent the geometry of the objects, in the past decade a strong transition has

616 T. H. Kolbe and A. Donaubauer

schema of the Geography Markup Language 3.1.1 (GML3; see Cox et al. 2004), the
extensible international standard for geodata exchange and encoding issued by the
OGC and the ISO TC211. It is further based on a number of standards from the ISO
191xx family, the OGC, the W3C Consortium, the Web 3D Consortium, and OASIS
(Kolbe 2009; Gröger and Plümer 2012).

The data model consists of class definitions for the most important objects within
virtual 3D city and landscape models. CityGML consists of a core module and
several extension modules. Whereas the core module comprises the basic concepts
and components of a virtual city, each extension module covers a specific thematic
field like buildings, bridges, tunnels, digital terrain model, water bodies, vegetation,
transportation, city furniture objects, etc. Implementations are not required to support
the entire data model but may employ only a subset of modules according to their
specific needs. Figure 34.2 shows an excerpt from the top-level class hierarchy of
CityGML.

CityGML defines five consecutive levels of detail (LoD), where objects become
more detailed with increasing LoD regarding both their spatial and thematic differ-
entiation. Each object may have attached a separate representation for each LoD
simultaneously. The five LoDs as defined by CityGML are illustrated in Fig. 34.3.

CityGML comprises class definitions for the representation of complex digital
terrain models (DTMs) in various forms from point clouds over raster data or TINs,
including break lines. All these DTM data types can be used to build composite or
hybrid terrain representations. The LoD concept even allows for the maintenance of
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CityModel **
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Fig. 34.2 UML diagram of the top-level class hierarchy of CityGML. All thematic objects are
considered geographic features (according to ISO 19109), and their classes are derived from the
abstract superclass CityObject. Attributes and subclasses are omitted here for the sake of readability
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