

Connect Sensors to Perception via Semantic Streams

11th Linked Data in Architecture and Construction Workshop Matera, 15th, June, 2023

Danh Le-Phuoc, DFG Principle Investigator and BIFOLD Junior Fellow

AloTwin

Me and my work

- Co-editor of W3C/OGC standard Semantic Sensor Network Ontology https://www.w3.org/TR/vocab-ssn/
- Developed one of the first RDF/Semantic Stream Processing Frameworks, CQELS (Continuous Query Evaluation over Linked Stream) → (Semantic) Stream Reasoning
- Principle Investigator of the DFG project, COSMO (Computing Foundations for Semantic Stream Processing) → Performance and Scalability
- ➤ Technical Coordinator of EU Horizon project, SMARTEDGE (Semantic Low-code Tools for Edge Intelligence) → Sensor fusion for Autonomous Vehicles, V2X and Robotics
- ➢ BIFOLD Junior Fellow and Project Lead of the Berlin Institute for Foundations of Learning and Data (bifold.berlin) → Neural-Symbolic AI for Cooperative Perception in V2X

Connect Sensors to the Graph of Things

(Semantic, Spatial and Temporal correlation)

http://graphofthings.org/: >200K live stream sources, >200 billion RDF triples/ graph edges

Le-Phuoc D. et al. The Graph of Things: A step towards the Live Knowledge Graph of connected things. J. Web Semantics 2016 Le-Phuoc D. et al. Live linked open sensor database. iSemantics 2010

Synergies from Cognitive Neuroscience

- Endel Tulving. 1972. *Episodic and semantic memory*. In Organization of Memory, ed. E Tulving,
 W Donaldson, pp. 381–403. New York: Academic
 - Semantic memory is organized knowledge a person possesses about <u>words</u> and other <u>verbal symbols</u>, their <u>meanings and referents</u>, about the <u>relations among them</u>, and about <u>rules</u>, formulas, and <u>algorithms for the</u> <u>manipulation of these symbols</u>, <u>concepts and relations</u> ⇒ Semantic Knowledge Graphs?
 - ◆ <u>Episodic memory</u> is associated with the *events* that take place in the life of an individual. It receives and store information about <u>temporally dated episodes</u> or <u>events</u> and <u>temporal spatial relations</u> among these events
 Event/Stream/(Spatial-)Temporal Graphs?
- Many studies of Cognitive Neuroscience shown <u>interdependence</u> in terms of <u>encoding and retrieval</u> ⇒
 Composability + Reasoning?

Semantic Memory and Episodic Memory as Semantic Streams

Semantic Streams: Computation model of Semantic Memory and Episodic Memory

Le-Phuoc, D., Hauswirth, M. (2022). Semantic Stream Processing and Reasoning. In: Zomaya, A., Taheri, J., Sakr, S. (eds) Encyclopedia of Big Data Technologies.

Unified Data Integration Bus with Semantic Streams in RDF Graphs

Bröring A…Le-Phuoc D. et al. Enabling IoT Ecosystems through Platform Interoperability. <u>IEEE Softw. 34(1)</u>, 2017 Le-Phuoc D. et al. Rapid prototyping of semantic mash-ups through semantic web pipes, WWW 2009

Stream of Sensory Observations as Stream Graphs

W3C/OGC Semantic Sensor Network ontology

Semantic Streams ⇒ Semantic-driven Declarative Programming

Unified Framework Using Processing Stream Graphs as Middleware

Anh L.T, .. Le-Phuoc D...et al. Towards Building Live Open Scientific Knowledge Graphs. WWW Companion 2022. Nguyen M. D, .. Le-Phuoc D..Towards autonomous semantic stream fusion for distributed video streams. DEBS 2021. Le-Phuoc D.. et al. A middleware framework for scalable management of linked streams. J. Web Semantics, Nov, 2012

CQELS execution Framework:

Autonomous RDF/Graph Stream Processing Kernel

100-1000 time faster than Relational or RDF engines

Four key improvements:

- Native storage structure for stream graphs
- Operator-aware indexing scheme
- Adaptive optimization
- Incremental Evaluation

Manh N.D,.. Le-Phuoc D.. Autonomous RDF Stream Processing for IoT Edge Devices. JIST 2019 Le-Phuoc D.. et al. Operator-aware Approach for Boosting Performance in Processing RDF streams. J. Web Semantics 2017 Le-Phuoc D. et al. A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data. ISWC 2011

Scaling Up: Scalable and Elastic Data Processing Framework

Le-Phuoc D.. et al. Elastic and scalable processing of linked stream data in the cloud. ISWC 2013

Scaling Out: Spatial, Temporal and Semantic-based Partitioning

Hoan N.M.Q ... Le-Phuoc D. EAGLE - A Scalable Query Processing Engine for Linked Sensor Data. Sensors 19(20), 2019 Hoan N.M.Q ... Le-Phuoc D. A learning approach for query planning on spatio-temporal IoT data. <u>IOT 2018</u>, Hoan N.M.Q and Le-Phuoc D. An elastic and scalable spatiotemporal query processing for linked sensor data. Semantics' 2015

Declarative Programing for Multimodal Sensor Fusion

Semantic Declarative Programming:

Write a data stream fusion pipeline as a single query: "Compute Drivability Map"?

How???

- > A query compiler needs the reasoning capability to understand what "Drivability Map" is
- > Which DNNs can consume camera, LiDARs and HD maps to detect objects/lanes to construct "Drivability Map"?
- > How to connect data fusion operations to continuously compute "Drivability Map" ?

How to Fuse Semantic Stream Data?

1.Detecting objects

An example for multiple object tracking pipeline with Deep Neural Networks (DNNs)

How to Fuse Semantic Stream Data?

1.Detecting objects 2 2. Propagating object states (location, velocity, ..) into future frames 2 3 6 det(**b**₁,car,0.8), det(**b**₃,car,0.7), det(**b**5, car, 0.8), det(**b**₈,car,0.8), det(b11, car, 0.8), det(b13, car, 0.7), $trk(b_6, 23), trk(b_7, 5), ...$ *trk*(**b**₂,23), *trk*(**b**₄,5),... trk(b₉,23), trk(b₁₀,5),... *trk*(**b**₁₂,23),*trk*(**b**₁₄,5) Stream of semantic symbols

An example for multiple object tracking (MOT) pipeline with Deep Neural Networks

How to Fuse Semantic Stream Data?

Streams of semantic symbols \Rightarrow use rules to represent <u>association hypotheses</u> \Rightarrow Reasoning

Ontology for Semantic Stream Fusion

An Extension of W3c/OGC Semantic Sensor Network Ontology (SSN)

- An abstraction of DNNs as Sensors or Samplers
- > Unify inputs/outputs of Sensors and DNNs →seamless integration of sub-symbolic with symbolic

Ontology for Semantic Stream Fusion

Haler A., Le-Phuoc D. ... The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semantic Web 10(1): 9-32 (2019)

Janowicz K., ... Le-Phuoc D., ..: SOSA: A lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56: 1-10 (2019)

Semantic Stream Reasoning Program

• Semantic Reasoning Program Π is <u>a set of weighted rules</u> r in the form: $\omega : \alpha \leftarrow \beta$

 $\succ \alpha, \beta$ are *logic/symbolic formulas* (Answer Set Programming program with <u>sliding windows</u>, i.e. LARS program) and $\omega \in \mathbb{R} \cup \{x\}$ is the weight of the rule

 \succ If $\omega = x$, then r is a <u>hard rule</u>, otherwise r is a <u>soft rule</u>

• The semantics of Π is given by

> the answer streams of **S** the LARS program Π_{S} obtained from Π by dropping the weights

> and for all r where **S** is violated $\alpha \leftarrow \beta \Longrightarrow$ **S** gets a probability $Pr_{\Pi}(S)$ calculated from

the weights of the rules retained for Π_{S} following Markov Logic Network

A semantic reasoning program in ASP language

ASP: Answer Set Programing

hard-rules.ssr

//hard rule 1: object enters the FoV-> trigger EC axioms
initiates(enters(0),inFoV(0),T):-enters(0)@T

//hard rule 2: object leaves the FoV-> release EC axioms
terminates(leaves(0),inFoV(0),T):-leaves(0)@T

//hard rule 3: transitive rule between the tracklet and object trklet(Trk,0)@T:-trk(Trk,B)@T,iSO(B,0). //hard rule 4: transitive rules between the tracklet and object iSO(B2,0):-iSO(B1,0),trk(Trk,B1),trk(Trk,B2),B1!=B2.

//hard rule 5: constraint on 1 object with only 1 tracklet :~trklet(T1,0),trklet(T2,0),T1!=T2.

//hard rule 6: trigger EC trajectory axiom
trajectory(trklet(Trk1,01),T1,trklet(Trk2,02),T2):-T=T1+T2,
ends(Trk1)@T, starts(Trk2) @ T, starts(Trk1) @ T1.

//hard rule 7: trigger EC antitrajectory axiom
antiTrajectory(trklet(Trk,0),T1,occl(0),T2:-occl(0)@T,
not trklet(Trk,0)@T, T=T1+T,T2>0

//hard rule 8: trigger EC antitrajectory axiom
antiTrajectory(occl(0),T1,trklet(Ttr,0),T2):-trklet(Trk,0)@T,
T=T1+T2, T2>0

Hard rules are traditional logic rules

soft-rules.ssr

//soft rule 1: detect vehicles entering FoV
enters(0)@T :- det(B,car,S),iSO(B,0), not inFoV(0)[5 sec], S>=0.8.

//soft rule 2: detect vehicles leaving FoV
leaves(0)@T:-not det(B,car,S)@T[5 sec], iSO(B,0),
not inFoV(0)[5 sec], S>=0.8.

//soft rule 3: emulate SORT algorithm iSO(B1,0) :- trk(T1,B1)@T, det(B2,OT,S) @ T, trklet(T1,0), iou(B1,B2).

// soft rule 4: emulate DeepSORT algorithm
iSO(B1,0) :- trk(Trk1,B1) @ T, vMatch(B1,B2), iSO(B2,0),
trklet(Trk2,0), ends(Trk2)@Te, T<Te+3,
trk(Trk2,02)@Te in [5 sec].</pre>

//soft rule 5: detect occlusion events
occl(0)@T1:-trk(Trk1,B1)@T2,trk(Trk2,B2),trklet(Trk1,0)@T2,
Trk1!=Trk2,iou(B1,B2), ends(Trk1)@T1,T1=T2+1.

All soft rules will be learnt to assign weights

Hard rules as knowledge-driven constraints

- Common Sense knowledge
 - Event Calculus :

>Axioms to enforce the Law of inertia

>Axioms on Trajectory, cause and effects, etc

- > Spatial and temporal reasoning rules: RCC-5, RCC-8, etc
- Domain-specific knowledge
 - Object motion constraints and patterns
 - Optical laws, e.g. optical flow
 - > Expert Knowledge embedded in Objects, Buildings and Roads

Soft rules as association hypotheses (if-then rules)

A semantic reasoning program in CQELS-RL

Semantic Stream Reasoning Framework

Execution phase: continuously execute the reasoning algorithm \rightarrow incremental reasoning algorithms on reasoning programs with learnt weights

Le-Phuoc D. et al. A Scalable Reasoning and Learning Approach for Neural-Symbolic Stream Fusion. AAAI 2021

Nguyen D. M...Le-Phuoc D. Towards autonomous semantic stream fusion for distributed video streams. DEBS 2021

Perception of Ego-Vehicle:

In-Vehicle sensors provide limited view of the world

Julius Ziegler et al Making Bertha Drive—An Autonomous Journey on a Historic Route, IEEE Intelligent Transportation Systems Magazine (Volume: 6, Issue: 2, Summer 2014)

Cooperative Perception for ADAS and ITS : V2X and I2V

I2V: Infrastructure to Vehicle

V2V: Vehicle to Vehicle

Distributed Semantic Streams for ADAS and ITS : V2X, I2I and I2V

Enhance Vehicle's Perception with V2I data streams

- Intersection Movement Assist with explainable messages
- Participants send intentions and get data-supported feedback that explains the reason why they are either approved or rejected. For example, Car A intends to turn left while Motorcycle B has the priority

Enhance Intersection's Perception with I2I and

I2V data streams

 Active option zone protection system based on swarm

12V

Smart Factories with Intelligent Mobile Robots

Integrate SLAM Components to Build Semantic Streams in ROS

Rosinol A, Violette A, Abate M, et al. Kimera: From SLAM to spatial perception with 3D dynamic scene graphs. The International Journal of Robotics Research. 2021

Fuse Different Semantic Abstraction Levels of Semantic SLAM

Semantic SLAM can use Semantic Building Information

R. W. M. Hendrikx, Pieter Pauwels, Elena Torta, Herman J. Bruyninckx, M. J. G. van de Molengraft: Connecting Semantic Building Information Models and Robotics: An application to 2D LiDAR-based Iocalization. ICRA 2021

Semantic SLAM can use Semantic Building Information

3D CAD Models Can Be Extracted to Knowledge Graph

Akshay G. Bharadwaj, Binil Starly, Knowledge graph construction for product designs from large CAD model repositories, Advanced Engineering Informatics, Volume 53, 2022,

3D Shape Knowledge Can Be Queried with SPARQL?

W. Nie, Y. Wang, D. Song and W. Li, "3D Model Retrieval Based on a 3D Shape Knowledge Graph," in *IEEE Access*, vol. 8, pp. 142632-142641, 2020, doi: 10.1109/ACCESS.2020.3013595.

3D CAD models as Priors for training 3D object detectors

Xingchao Peng, Baochen Sun, Karim Ali, Kate Saenko; Learning Deep Object Detectors From 3D Models (ICCV), 2015

Karen Castañeda, Omar Sánchez, Rodrigo F. Herrera, Eugenio Pellicer, Hernán Porras, BIM-based traffic analysis and simulation at road intersection design, Automation in Construction, Volume 131, 2021

And Semantic City Models?

CityGML with Open 3D city models: https://www.3dcitydb.org/

BIM+ CityGML?

Kolbe, T.H., Donaubauer, A. (2021). Semantic 3D City Modeling and BIM. In: Shi, W., Goodchild, M.F., Batty, M., Kwan, MP., Zhang, A. (eds) Urban Informatics. The Urban Book Series. Springer, Singapore.

Can Spatial Knowledge be used to build better Perception Systems?

Beyond Large Language Models !!!

Pervasive Intelligence and Computing Lab (PICOM.AI)

Danh Le Phuoc

Anh Le Tuan

Manh Nguyen Duc

Jicheng Yuan

Guanyang Li

Recent References

[AAAI21]Danh Le-Phuoc, Thomas Eiter, Anh Le-Tuan. A Scalable Reasoning and Learning Approach for Neural-Symbolic Stream Fusion. The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI' 2021)

[DEBS21]Manh Nguyen Duc, Anh Lê Tuán, Manfred Hauswirth, Danh Le Phuoc: Towards autonomous semantic stream fusion for distributed video streams. DEBS 2021: 172-175

[**ESWC22**]Patrik Schneider, Daniel Alvarez-Coello, Anh Le-Tuan, Manh Nguyen Duc, Danh Le Phuoc: Stream Reasoning Playground. ESWC 2022

[**ISWC21**]Anh Lê Tuán, Trung-Kien Tran, Duc Manh Nguyen, Jicheng Yuan, Manfred Hauswirth, Danh Le Phuoc: VisionKG: Towards A Unified Vision Knowledge Graph. ISWC 2021

[**Neurisp22**]Trung-Kien Tran, Anh Le-Tuan, Manh Nguyen Duc, Jicheng Yuan, Danh Le Phuoc: Fantastic Data and How to Query Them. Neurisp Data Centric AI workshop, 2022

[**CoRR22**]Manh Nguyen Duc, Anh Le-Tuan, Manfred Hauswirth, David Bowden, Danh Le Phuoc: SemRob: Towards Semantic Stream Reasoning for Robotic Operating Systems. CoRR abs/2201.11625 (2022)

[**JoWS19**]Krzysztof Janowicz, Armin Haller, Simon J. D. Cox, Danh Le Phuoc, Maxime Lefrançois: SOSA: A lightweight ontology for sensors, observations, samples, and actuators. Journal of Web Semantics 56: 1-10 (2019)

[**Jist2019**]Manh Nguyen Duc, Anh Lê Tuán, Jean-Paul Calbimonte, Manfred Hauswirth, Danh Le Phuoc: Autonomous RDF Stream Processing for IoT Edge Devices. JIST 2019: 304-319