Linked dat a for the life cycle assessment of built assets

Calin Boje*, Tomas Navarrete, Sylvain Kubicki, Thomas Beach

R&T Associate calin.boje@list.lu

15/06/2023

Why develop an LCA ontology for the built environment?

Increased interoperability between LCA and built environment tools

Means for increased automation on LCA

More "explainable" impacts assessments given complex contexts and hybrid data sources

Ontology development process – Steps 1, 2&3

Table 1

Relevant tools with concepts related to Semantic LCA domains

Ontology/Schema	Туре	Domain	Concepts of interest	
BONSAI	ontology	LCA	activities, flows, properties	
LCA Commons ¹³	library	LCA	flows, mappings	
OpenLCA Schema ¹⁴	schema		methods, processes, results, impact	
			categories	
Brightway2 ¹⁵	Library	LCA	toolkits for calculation	
IfcOwl ¹⁶	ontology	Building	elements, materials, properties,	
			aggregations, hierarchies, types, spatial	
			constructs, sensors	
BOT ¹⁷	ontology	Building	spatial constructs, elements	
OPM ¹⁸	ontology	Building	properties	
RealEstateCore ¹⁹	ontology	Building	building systems, elements, spatial	
			constructs, sensors and controls	
Building Product	ontology	Building	elements, aggregations, properties	
Ontology ²⁰				
SSN-SOSA ²¹	ontology	Sensing	sensors, observations, results	
SAREF ²²	ontology	Sensing	devices, appliances, energy, gas	BONSAI dedicated to LCA
		Integration		activities alone
Freeclass ontology ²³	ontology &	Building	hierarchies, building products, processes,	No dedicated optologies for
	classification		properties	describing built assets
DCMI ²⁴	ontology	Metadata	annotations	construction and usage exist
SKOS ²⁵	ontology	Metadata	semantic associations	
XKOS ²⁶	ontology	Metadata	associations of classifications	
OWL-time ²⁷	ontology	Scenario	time spans, start, end times	
		& State		

Ontology development process - step 4

Use cases

no	Name	Scope			
1	BIM to LCA	BIM elements, materials, products			
2	Operational trade-offs	Energy consumption, air quality, human toxicity			
3	Building energy optimisation	Energy modelling, simulation, optimisation algorithms			
4	District energy	Energy consumption prediction			
5	District building's extensions	Extended buildings, materials			
6	Weighting/Scoring	Weighting factors, single scores			

Semant ic LCAPil ot s

Ontology development process - steps 5 & 6

Compet ency quest ions

A total of 145 competency questions were identified (duplicates excluded)

LCA examples:

What are the available LCA impact categories?

What are the LCA impact categories considered for calculation?

Which Life Cycle Impact Assessment (LCIA) method is used for the calculation?

https://github.com/bojecp/slcao/blob/main/CompetencyQuestions.md

SLCAO – work in progress

Not all data properties were modelled/specified

Aimed to fit into a software system as a data integration schema, with minimal reasoning

Challenging to fit multiple very different use cases -> a modular mapping

Ţ

Ontology development process - steps 6 &7

Case study on buil ding dat a

4 step process

1. Explicitly state mappings of internal modules & external ontologies

2. Converted to triples relevant LCA/BIM data

3. Match LCA processes (with impacts in CO2) to relevant material quantities or measurements (energy/water/gas, etc.)

(using SWRL rules, SPARQL, or just SPARQL)

4. Calculate the impacts (using SPARQL)

2. Write instance data in triples (ABox)

3. Match LCA processes/activities with BIM or other measured data

4. Calculate impacts (CO2)

We initially integrated a Brightway2 service to conduct LCA on specific BIM models. Challenges: - no semantic models/ontologies on LCA side - - materials had to be mapped to Ecoinvent at 1:1 basis

Step 1-mapping ont ol ogies (Tbox)

Figure 3: Schema level representation of Tbox assertions, with imported concepts from nearby domain ontologies.

SIIP3 - mat ching LCA and buil ding inst ance dat a

Limitations:

- bim data is low quality
- enriched BIM data (materials + NLSfB) is too vague for LCA
- Ica data is very specific, depending on markets/locations

See results in Table 3

We defined 3 tiers of matching:

- Tier III related data; a broad match, with many potential results;
- Tier II relevant data; a close match; high possibility of exact concepts with several results;
- Tier I exact data; an identical match; 1 specific result.

We implemented several rules for tier III and II, using SWRL rules, but SPARQL is also possible

Table 2

Example rules for matching LCA processes with building material types using SKOS relationships

no	Tier	Body	Head		
1	III	lca:tag(?p, ?tag) ^ building:elementName(?e, ?name) ^ swrlb:matches(?name, ?tag)	-> skos:relatedMatch(?e, ?p)		
3	III	<pre>lca:tag(?p, ?tag) ^ building:materialTypeName(?m, ?name) ^ swrlb:matches(?name, ?tag)</pre>	-> skos:relatedMatch(?m, ?p)		
4	II	building:Element(?e) ^ skos:relatedMatch(?e, ?p) ^ building:MaterialType(?m) ^ skos:relatedMatch(?m, ?p)	-> skos:closeMatch(?m, ?p)		

Case study-step 2: Cal cul at ing LCAimpacts

Impacts of 1 selected element in GWP

1	1 * PREFIX lca: <http: lca="" slca="" slca.org=""></http:>							
2	PREFIX building: <http: building="" slca="" slca.org=""></http:>							
3	PREFIX skos: <http: th="" www.w<=""><th colspan="7">PREFIX skos: <http: 05="" 2008="" skos#="" www.w3.org=""></http:></th></http:>	PREFIX skos: <http: 05="" 2008="" skos#="" www.w3.org=""></http:>						
4	PREFIX rdfs: <http: th="" www.w<=""><th>3.org/2000/01/rdf-schema#></th><th></th><th></th><th></th><th></th></http:>	3.org/2000/01/rdf-schema#>						
5	PREFIX bw2ont: <http: onto<="" th=""><th>logy.brightway.dev/></th><th></th><th></th><th></th><th></th></http:>	logy.brightway.dev/>						
6								
7	SELECT DISTINCT ?materialN	ame ?lcaName ?mass ?gwp (AB	5(?gwp * ?mass) as ?ca	lculate	dGwp)			
8 1	WHERE {							
9	<pre>?element building:hasMat</pre>	erial ?material .						
10	?material building:mater	ialMass ?mass .						
11	?material building:hasMa	terialType ?materialType .						
12	?materialType building:m	aterialTypeName ?materialNa	ne .					
13	?materialType skos:close	Match ?lcaProcess .						
14	<pre>?lcaProcess rdfs:label ?</pre>	lcaName .						
15	<pre>?lcaProcess bw2ont:gwp ?</pre>	gwp .						
16	}							
	materialName 🔤	IcaName 🕀	mass	₿	gwp 😌	calculatedGwp 😝		
1	"Masonry - Brick"	"market for clay brick"	"2504"^^xsd:double		"0.318174743118504"^^xsd:deci mal	"796.709556768734e0"^^xsd:do uble		
2	"Plasterboard"	"market for gypsum, mineral"	"174.16"^^xsd:double		"0.06483115139577918"^^xsd:d ecimal	"11.290993327088902e0"^^xsd: double		
3	"Metal - Stud Layer"	"market for steel, low-alloyed"	"30"^^xsd:double		"1.9957075713862387"^^xsd:de cimal	"59.87122714158716e0"^^xsd:d ouble		
4	"Insulation / Thermal Barriers - Rigid insulation"	"market for stone wool"	"24.5"^^xsd:double		"1.3369904608859726"^^xsd:de cimal	"32.75626629170633e0"^^xsd:d ouble		
5	"Masonry - Concrete Block"	"market for concrete block"	"5135"^^xsd:double		"0.07056324260584888"^^xsd:d ecimal	"362.342250781034e0"^^xsd:do uble		

Case study-step 2: Cal cul at ing LCAimpacts

Impacts of 1 selected material type in GWP, across the BIM

1 •	PREFIX building: <http: building="" slca="" slca.org=""></http:>						
2	<pre>PREFIX skos: <http: 05="" 2008="" skos#="" www.w3.org=""></http:></pre>						
3	<pre>PREFIX bw2ont:<http: ontology.brightway.dev=""></http:></pre>						
4							
5	SELECT ?materialName ?totalVolume (ABS(?gwp * ?total	alVolume) as ?totalGwp)					
6 •	• WHERE {						
7	<pre>?materialType building:materialTypeName ?materialNa</pre>	lame .					
8	<pre>?materialType skos:closeMatch ?lcaProcess .</pre>						
9	<pre>?lcaProcess bw2ont:gwp ?gwp .</pre>						
10 -	▼ {						
11	SELECT ?materialType (SUM(?vol) as ?totalVolume)						
12 •	WHERE {						
13	<pre>?material building:materialVolume ?vol .</pre>						
14	<pre>?material building:hasMaterialType ?materialType .</pre>						
15	} GROUP BY ?materialType						
16	}						
17	FILTER STRSTARTS(?materialName, "Concrete")						
18	}						
	materialName 🖨 totalVo	′olume 😫	totalGwp 😔				
1	"Concrete" "48.761	61477286999956e0"^^xsd:double	"14301.174376684177e0"^^xsd:double				

Case study-step 2: Cal cul at ing LCAimpacts

Impacts of 1 selected measurement type in GWP (energy consumption)

1 -	PREFIX sense: <http: sense="" slca="" slca.org=""></http:>						
2	PREFIX skos: <http: 05="" 2008="" skos#="" www.w3.org=""></http:>						
3	<pre>PREFIX bw2ont:<http: ontology.brightway.dev=""></http:></pre>						
4	<pre>PREFIX sosa: <http: ns="" sosa="" www.w3.org=""></http:></pre>						
5	<pre>PREFIX qudt-1-1: <http: 1.1="" qudt#="" qudt.org="" schema=""></http:></pre>						
6							
7	SELECT ?observableProperty ?unit ?value ?gwp (ABS(?gwp * ?value) as ?calculatedGwp)						
8 -	* WHERE {						
9	<pre>?building sense:hasSenso</pre>	r ?sensor .					
10	<pre>?sensor sosa:observes ?o</pre>	bservableProperty .					
11	<pre>?observableProperty skos:exactMatch ?lcaProcess .</pre>						
12	<pre>?lcaProcess bw2ont:gwp ?gwp .</pre>						
13	<pre>?sensor sosa:madeObservation ?observation .</pre>						
14	<pre>?observation sosa:hasResult ?result .</pre>						
15	<pre>?result qudt-1-1:numericValue ?value .</pre>						
16	<pre>?result qudt-1-1:unit ?unit .</pre>						
17	}						
	observableProperty 🕀	unit 🕀	value 👌	gwp	₿	calculatedGwp	€
1	<http: appart<br="" data="" example.org="">ment/134/electricConsumption></http:>	<http: 1.1="" qudt.org="" unit#<br="" vocab="">Kilowatthour></http:>	"22.4"^^xsd:double	"0.3496524295499448"^^xsd:decin	nal	"7.832214421918763e0"^^xsd:dou	ıble

conclusions

The SemanticLCA ontology is useful because it models practical applications of applying LCA to buildings (materials and energy use)

Mapping BIM and LCA domains is challenging and limited due to different scopes, but could be more automated.

Semantic web technologies can bridge the interoperability gap between LCA and built assets, allowing more explainable impacts of building elements and energy usage.

